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Abstract Palaeodata in synthesis form are needed as
benchmarks for the Palaeoclimate Modelling Inter-
comparison Project (PMIP). Advances since the last
synthesis of terrestrial palaeodata from the last glacial
maximum (LGM) call for a new evaluation, especially
of data from the tropics. Here pollen, plant-macrofossil,
lake-level, noble gas (from groundwater) and d18O
(from speleothems) data are compiled for 18$2 ka
(14C), 32 3N}33 3S. The reliability of the data was evalu-
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ated using explicit criteria and some types of data were
re-analysed using consistent methods in order to derive
a set of mutually consistent palaeoclimate estimates of
mean temperature of the coldest month (MTCO), mean
annual temperature (MAT), plant available moisture
(PAM) and runo! (P-E). Cold-month temperature
(MAT) anomalies from plant data range from !1 to
!2 K near sea level in Indonesia and the S Paci"c,
through !6 to !8 K at many high-elevation sites
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to !8 to !15 K in S China and the SE USA. MAT
anomalies from groundwater or speleothems seem
more uniform (!4 to !6 K), but the data are as yet
sparse; a clear divergence between MAT and cold-
month estimates from the same region is seen only in
the SE USA, where cold-air advection is expected to
have enhanced cooling in winter. Regression of all
cold-month anomalies against site elevation yielded an
estimated average cooling of !2.5 to !3 K at mod-
ern sea level, increasing to +!6 K by 3000m. How-
ever, Neotropical sites showed larger than the average
sea-level cooling (!5 to !6 K) and a non-signi"cant
elevation e!ect, whereas W and S Paci"c sites showed
much less sea-level cooling (!1K) and a stronger
elevation e!ect. These "ndings support the inference
that tropical sea-surface temperatures (SSTs) were
lower than the CLIMAP estimates, but they limit the
plausible average tropical sea-surface cooling, and they
support the existence of CLIMAP-like geographic pat-
terns in SST anomalies. Trends of PAM and lake levels
indicate wet LGM conditions in the W USA, and at the
highest elevations, with generally dry conditions else-
where. These results suggest a colder-than-present
ocean surface producing a weaker hydrological cycle,
more arid continents, and arguably steeper-than-pres-
ent terrestrial lapse rates. Such linkages are supported
by recent observations on freezing-level height and
tropical SSTs; moreover, simulations of &&greenhouse''
and LGM climates point to several possible feedback
processes by which low-level temperature anomalies
might be ampli"ed aloft.

1 Introduction

The climate of the last glacial maximum (LGM) con-
tinues to present challenging problems for palaeo-
climatologists and climate modellers, now nearly
20 y after the publication of Peterson et al.'s (1979)
pioneering synthesis of terrestrial palaeodata and the
CLIMAP (1976, 1981) reconstruction of conditions at
the ocean surface. In some ways, our ignorance of the
processes determining the nature of the glacial climate
regime appears to have grown since then. The exis-
tence of ice-core records and the resulting discovery
of major changes in the atmospheric concentrations of
the greenhouse gases CO

2
, CH

4
and N

2
O between the

LGM and Holocene has presented new, unsolved prob-
lems about the regulation of natural changes in global
biogeochemical cycles, their linkages to one another
and their coupling with the physical climate system
(Lorius and Oeschger 1994). The discovery of rapid
climate changes during the last glacial period chal-
lenges our ability to predict the coupled physical dy-
namics of atmosphere, ocean and ice (Johnsen et al.
1992; Bond et al. 1993; Broecker 1997). The need to
understand the processes which bring about major

state changes in the Earth's climate is made clear by
atmosphere-ocean model simulations showing that
there are complex transient e!ects in the response of
climate to anthropogenic changes in greenhouse gas
budgets (Rahmstorf 1994; Stocker and Schmitter 1997),
and suggest a potential for further feedbacks on atmo-
spheric carbon dioxide concentration [CO

2
] (Sar-

miento and le QuereH 1996; Sarmiento et al. 1998).
A focus on the tropics, in particular, is justi"ed by the
current debate about the e!ectiveness, or otherwise, of
homeostasis in tropical temperatures when forced by
changes in [CO

2
] (Kattenberg et al. 1996). If we are

able to reconstruct and successfully model the climate
response of the tropics at the LGM, we will have reason
to be more con"dent in our ability to estimate the
global climate sensitivity to changes that may be
brought about by human actions.

Several scienti"c developments since the Peterson
et al. (1979) synthesis have greatly increased the
amount of information available on the state of di!er-
ent aspects of the Earth system at the LGM. They
include:

1.1 LGM boundary conditions

These can now be speci"ed with greater con"dence and
precision than was possible when the "rst simulations
of LGM land climates were performed (Williams et al.
1974; Gates 1976; Manabe and Hahn 1977; Manabe
and Broccoli 1985a, b; Broccoli and Manabe 1987;
Kutzbach and Guetter 1986). We now have a globally
consistent reconstruction of ice distribution and rela-
tive sea-level changes from the LGM to present (Peltier
1994); measurements of LGM atmospheric concentra-
tions of the major greenhouse gases (Barnola et al.
1987; Chappellaz et al. 1990; Leuenberger and Sigen-
thaler 1992); and a better speci"cation of LGM insola-
tion forcing following the discovery that the 14C age of
18 ka for the LGM represents+21 ka in astronomical
years (Bard et al. 1990; Kutzbach et al. 1993).

1.2 Palaeoclimate modelling

This has advanced considerably, due to the availability
of faster computers and the progressive re"nement of
atmospheric and ocean models. Palaeoclimate simula-
tions with atmospheric general circulation models
are now commonly performed for 510 annual cycles,
and often include interactive oceanic components.
The achievable spatial resolution in global models has
improved to 2}33, and representations of land-atmo-
sphere interactions have become more realistic
(Houghton et al. 1996). Simulations including coupling
to dynamical ocean models (e.g. Kutzbach and Liu
1997; Hewitt and Mitchell 1998) and biosphere models
(e.g. Foley et al. 1998) can now be undertaken. In
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addition, simpli"ed, lower-resolution but fast models
are being developed that show promise in elucidating
the long-term interactions of di!erent components of
the climate system (Ganopolski et al. 1998). The gener-
ality of model results can be assessed thanks to the
Palaeoclimate Modeling Intercomparison Project
(PMIP) (Joussaume and Taylor 1995; Joussaume et al
1998; Pinot et al. this volume), which has speci"ed
a small number of standard model experiments for 6 ka
and 21 ka that are being carried out by about 20
modelling groups.

1.3 Acquisition of terrestrial palaeodata from the LGM

This has continued, and in particular there have been
major e!orts to obtain records from sediment cores in
previously data-sparse regions in the tropics. Dating
accuracy has also improved thanks to the increasing
use of AMS for 14C-dating small samples of material of
identi"ably terrestrial origin (e.g. plant macrofossils),
thus avoiding the problems of dating sediments mostly
devoid of carbon.

1.4 Data syntheses

These have been carried out on a more comprehensive
and rigorous basis than before, starting with the Global
Lake Level Data Base (Street-Perrott et al. 1989) and
the regional pollen and lake-level data compilations
carried out within the COHMAP project (Wright et al.
1993) and continuing through the IGBP-sponsored
BIOME 6000 project (Prentice and Webb 1998), which
includes the compilation of pollen records for the LGM
and their translation into palaeobiomes using a stan-
dard methodology (Prentice et al. 1996; Prentice, Jolly
and BIOME 6000 participants, unpublished data).

1.5 Understanding and interpretation of the &&classical''
data sources

This has improved greatly. Di!erent types of data
often respond to di!erent seasonal aspects of climate,
and such di!erences may account for apparent discrep-
ancies between proxies (e.g. the coexistence of high lake
stands with steppe vegetation in the Mediterranean
region at LGM: Prentice et al. 1992a). Calibration
methods using multiple data sets have been developed
(Guiot et al. 1993). Possible e!ects of CO

2
on treeline

elevations (Street-Perrott 1994; Crowley and Baum
1997; Street-Perrott et al. 1997) have been recognized
and included in ecosystem models (Jolly and Haxeltine
1997). Interpretation of changes in equilibrium-line
altitude (ELA) of glaciers is understood to require con-
sideration of precipitation changes as well as temper-
ature changes (Zielinski and McCoy 1987; Hostetler

and Clark 1997), and observational and modelling
studies of recent glacier variations have suggested the
existence of feedbacks that may amplify the response of
ELA to temperature changes at sea level (Oerlemans
1986; Crowley and Kim 1996; Diaz and Graham 1996;
Crowley and Baum 1997; Martin et al. 1997).

1.6 New data sources

These have been developed, including the &&noble gas
thermometer'' in groundwater (Stute et al. 1992; Stute
and Schlosser 1993) and d18O in speleothems (Laurit-
zen 1993, 1996) as records of mean annual (subsurface)
temperatures on land.

1.7 Our understanding of the temporal context
of the LGM

This has changed drastically, due to the recognition of
large synchronous climate #uctuations during the gla-
cial stages in high-resolution climate records from
Greenland ice (Johnsen et al. 1992; Dansgaard et al.
1993), marine foraminiferal records (Bond et al. 1993),
terrestrial pollen records (Grimm et al. 1993; Watts
et al. 1996) and loess (Porter and An 1995; Guo et al.
1996; Chen et al. 1997). This context makes it important
to consider the relative response times of di!erent types
of data, and to avoid the mistake of correlating LGM
with short-lived cold episodes, such as the last Heinrich
event (H1) in the North Atlantic. Thus, the selection of
data to correspond to the LGM should be based on
independent dating, and not simply on locating the
most extreme conditions during the much longer peri-
od correlative with isotope stage 2.

1.8 Our purpose

Against this background, we "nd it timely to present a
new synthesis of the available palaeoclimatic data from
terrestrial records at the LGM. We focus on the region
between 32 3N to 33 3S, because of the continuing inter-
est in the problem of reconciling terrestrial and marine
records from the tropics (Webster and Streten 1978;
Rind and Peteet 1985; Anderson and Webb, 1994;
Guilderson et al. 1994; Thompson et al. 1995; Broecker
1997) and because of the key importance of the tropical
temperature response in discussions about future cli-
mates (Houghton et al. 1996). The choice of latitudinal
limits beyond the tropics (sensu stricto) enabled us to
include important data points from the subtropics.

We de"ne the LGM by a 14C-age bracket of
18$2 ka. Although this period was clearly not climat-
ically homogeneous, the independent dating control on
most records is insu$cient to allow greater precision
while the $2 ka tolerance range is narrow enough
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to exclude the largest anomalies, namely the Heinrich
events that occurred before (H2:+22}21 ka 14C) and
after (H1: +15-14 ka 14C) the LGM (Bond et al. 1993).
This chronological criterion is applied strictly. Thus,
we do not consider data from other times during iso-
tope stage 2 as representing the LGM. This is an
important di!erence between our approach, which is
oriented towards comparison with model results (Pinot
et al. this volume) for a speci"c time period, and some
discussions in the literature which have focused on the
question of the maximum degree of cooling during the
entire last glacial interval (e.g. Colinvaux et al. 1996).
We insist on the distinction because the LGM as de-
"ned in terms of global ice volume does not necessarily
coincide with the timing of maximum cooling (or even
local glacier advance) in any particular region. If data
were aggregated from a broader time interval, the result
might be a composite of diachronous climates and
might therefore correspond to no physically possible
state of the global climate system.

Our principal aim has been to assemble the extant
information on tropical terrestrial palaeoclimates at
the LGM from the approximately 200 sites that fall in
the geographical and temporal ranges speci"ed, and
to extract where possible quantitative estimates of the
di!erence between LGM and present climate. Geo-
chemical or statistical methods have been used to re-
construct climatic di!erences at a limited number of
sites; these reconstructions were accepted without
modi"cation provided they met certain standards.
More often indirect estimates have been made, e.g.
based on converting elevation shifts of vegetation zones
to changes in temperature. We re-evaluated these in-
direct estimates, based on the originally published data,
using a standard methodology including an objective
method to estimate lapse rates. Estimates of aspects of
the water balance (plant-available moisture and pre-
cipitation minus evapotranspiration) were also com-
piled, but on a qualitative basis.

2 Potential sources of information on tropical palaeoclimate

Many data sources could potentially be used to reconstruct tropical
palaeoclimates. No one source has all the characteristics to make it
ideal: wide spatial distribution, high temporal resolution, good dat-
ing control, direct and well-understood climatic controls, and the
potential to yield quantitative climate reconstructions. Furthermore,
since individual types of data respond to di!erent seasonal aspects of
the climate, multiple types need to be used when reconstructing past
climates. The use of multiple types of data also makes it possible to
check whether reconstructions based on individual types are phys-
ically consistent. The data sources used here are pollen and plant
macrofossil records; geochemical and isotopic records from fossil
water or carbonates; and lake-level reconstructions based on
geomorphic and stratigraphic records. A new synthesis of glacial
ELA reconstructions from geomorphic records in tropical mountain
regions in underway, and will be reported in a subsequent study
(Part II). In the following section we describe the characteristics of
each data type in turn, and its relationship to climate.

2.1 Pollen and plant macrofossil data

Pollen grains are quantitatively preserved in mire and lake sedi-
ments that can be dated by 14C. Pollen data are the largest and most
widespread source of information on Late Quaternary palaeoen-
vironments. Despite di!erences in the production and dispersal of
pollen from di!erent plant taxa, pollen assemblages from sediments
can be interpreted as a quantitative record of the surrounding
vegetation (Prentice 1988). Regionally dominant taxa are normally
well represented and smaller counts of less abundant taxa provide
additional information, allowing pollen assemblages to be assigned
correctly to biomes (Prentice et al. 1996). Procedures to assign
biomes, and to make palaeoclimate estimates, can be calibrated
using the large sets of pollen data in modern (surface) samples that
have been assembled for many regions (e.g. Guiot 1990; Cheddadi
et al. 1996; Jolly et al. 1998b; Yu et al. 1998)

Most pollen grains are identi"able to genus or family. Plant
macrofossils can often be identi"ed to species. Macrofossils are
preserved in some sediments and can provide additional informa-
tion, for example by distinguishing climatically indicative species
within widely distributed genera (Jackson et al. 1997). Macrofossils
are abundant in middens made by Neotoma (packrats) or Hyrax in
arid regions. Such middens are 14C-datable and provide a rich
source of information on Late Quaternary palaeoenvironments
(Van Devender et al. 1987).

Plant taxon and biome distributions are highly sensitive to several
aspects of the atmospheric environment. These geographic distribu-
tions can be characterized today in a climate space which globally
has at least three dimensions, e.g. the mean temperature of the
coldest month (MTCO), total growing-season warmth (indexed by
growing degree days above a threshold temperature for growth), and
plant-available moisture (PAM) (Woodward 1987; Prentice et al.
1992b; Sykes et al. 1996). (PAM represents the availability of soil
moisture to satisfy the plants' demand for evapotranspiration; if
PAM is reduced, plant carbon gain is also reduced.) Knowing the
biome, or knowing the assemblage of plants and their bioclimatic
ranges, one can locate a given palaeoenvironment in this space.
Changes in pollen assemblages therefore often give information
about changes in more than one climate variable (for example, the
e!ects of changes in cold-month temperatures and PAM have di!er-
ent and independent e!ects on vegetation). Various techniques are
used to make climatic inferences, including qualitative comparisons
of plants identi"ed with their modern distributions; quantitative
estimates of minimum and maximum changes required to produce
a given biome shift; and quantitative palaeoclimate estimates based
on statistical calibration of modern pollen samples (transfer-func-
tion, modern-analog and response surface techniques: Guiot 1991;
Bartlein and Whitlock, 1993).

In tropical mountain regions, comparisons of LGM-age pollen
samples with vegetation or modern pollen samples from di!erent
elevations have often been used to estimate shifts in the apparent
elevation of speci"c forest belts or treeline. The reconstructed shifts
in apparent elevation are then multiplied by a lapse rate to yield
temperature change estimates. However, since photosynthesis and
stomatal conductance are sensitive to atmospheric [CO

2
], vari-

ations in [CO
2
] can in principle modify the response of plants to

climate and therefore constrain the locations of plant distributions
in climate space. Biome-level responses can only be inferred by
ecosystem modelling based on experimental results at the plant and
ecosystem levels because [CO

2
] is essentially constant spatially

today (Walker and Ste!en 1997). Nevertheless, the LGM distribu-
tions of plant taxa and biomes in relation to climate may have been
modi"ed by low [CO

2
] (Davis, 1991). Tropical mountain treeline, in

particular, is thought to be potentially sensitive to low [CO
2
]. The

trees near treeline exist today under conditions of extremely low
primary productivity, due to a combination of year-round low
temperatures and a low internal partial pressure of [CO

2
] (Street-

Perrott 1994; Street-Perrott et al. 1997). If [CO
2
] were further

lowered then primary productivity could become too low to sustain
tree growth. One model result indicates that LGM treelines in the
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tropics might have been lowered by hundreds of metres due to
physiological e!ects of 190 ppmv [CO

2
], i.e. a lowering of the same

order of magnitude as that observed (Jolly and Haxeltine 1997).
Changes in the upper elevational limits of montane forest belts,

however, are probably unresponsive to [CO
2
]. The upper eleva-

tional limits of lowland and lower-montane rainforest trees are
determined by the fact that these taxa, unlike taxa from higher
elevations, have no protection mechanisms against chilling or frost
(Woodward 1987). We therefore assume that these limits are con-
trolled by MTCO. In the tropics sensu stricto and especially in the
wet tropics, MTCO and mean annual temperature (MAT) must be
closely correlated because of the relatively low seasonal range of
temperatures. In the subtropics these two variables can diverge, e.g.
any mechanism that would produce colder winters while not a!ect-
ing the other seasons would reduce MTCO considerably more than
MAT.

Low [CO
2
] at the LGM might also have led to &&physiological

drought'' since stomatal conductance is generally greater at low
[CO

2
], causing greater transpiration per unit leaf area, and is likely

to have favoured plants with the C
4

pathway of photosynthesis
(e.g. tropical grasses), which concentrate CO

2
around the chloro-

plasts, over the C
3

pathway used by most temperate plants and all
trees. These e!ects would not be con"ned to high elevations and
might have contributed to a general reduction in PAM, as de"ned
here, and an expansion of tropical grasslands at the expense of
forests.

2.2 Noble gases in groundwater

The solubility of the noble gases (Ne, Ar, Kr, Xe) in water is
temperature dependent. Both solubility and its sensitivity to temper-
ature increase with atomic mass (Mazor 1972). As water percolates
from the land surface through the unsaturated soil zone during
groundwater recharge, the noble gas content of the water equili-
brates with that of the air in the soil pore space. Exchange ceases
once the water reaches the underlying aquifer. Thus, in principle, the
noble gas spectrum of groundwater re#ects the temperature in the
unsaturated soil zone at the time and place of recharge (Herzberg
and Mazer 1979; Stute and Schlosser 1993). In reality, measured
noble gas concentrations are often higher than might be expected
given perfect equilibration. This additional component, termed &&ex-
cess air'' is most likely caused by #uctuations of the water table,
trapping small air bubbles that are then dissolved under increased
hydrostatic pressure (Heaton and Vogel 1981). Some of this excess
air may subsequently be lost by secondary gas exchange across the
water table. The excess air contribution is unknown a priori. How-
ever, because excess air di!erentially a!ects the apparent temper-
ature reconstructed from the di!erent gases (the greatest e!ect is on
the lightest, least soluble Ne, the smallest e!ect on Xe), true noble-
gas temperature can be estimated by subtracting an excess air
contribution that yields similar temperature estimates (within
measurement errors) for all four gases (Stute and Schlosser 1993;
Stute et al. 1995).

In con"ned aquifers, isolated from the atmosphere, the ground-
water #ows downstream to the discharge area carrying a temper-
ature signal imprinted in the recharge area. Typical groundwater
#ow velocities in con"ned aquifers are of the order of 1 m y~1.
As a result, a 50 km long aquifer many potentially provide a
50 000 y long record of temperatures in the recharge zone. How-
ever, small-scale mixing processes (dispersion) which occur during
groundwater #ow mean that this record is temporally smoothed.
Typical dispersion coe$cients are of the order of 10 to 100 y. Model
calculations suggest that, for typical #ow velocities and dispersion
coe$cients, the smoothing e!ect at the LGM is of the order of
2000 to 5000 y (Stute and Schlosser 1993).

Radiocarbon provides the only well-established method of dating
groundwater. The geochemical evolution of the groundwater must
be taken into account in order to derive reliable 14C estimates

(Fontes and Garnier 1979). Comparison of correction models (e.g.
Phillips et al. 1989) suggests that errors on the order of $2000 y
should be assigned to 14C ages on groundwater.

Thus, the &&noble gas thermometer'' can be used to provide quan-
titative estimates of changes in mean annual ground temperature in
the recharge zone. Ground temperature can be equated with mean
annual temperature (MAT), except in regions where seasonal snow
cover drastically changes the thermal insulating properties of the
surface, which is not a concern for any of the sites used here.
Groundwater measurements cannot provide high resolution re-
cords, partly because of the smoothing of the climate signal caused
by dispersion processes, and partly because of the dating errors, but
the estimates are presumably reliable for the glacial-interglacial time
scale. A caveat is that because of the inherent averaging, the record
may also incorporate information from extreme events within the
e!ective averaging period. Another possible uncertainty concerns
the location of the recharge zone relative to the sampling site.
However, any errors introduced by not knowing the exact location
of the recharge zone are probably slight, for two reasons. First, the
accuracy of noble-gas temperature estimates for the present day
supports the reliability of estimates for the past. Second, any possible
error due to incorrectly specifying the elevation of the recharge zone
is strongly compensated for by the opposing e!ects of atmospheric
pressure and temperature on the solubility of noble gases.

2.3 d18O in speleothems

Speleothems (stalactites, stalagmites, dripstone) are secondary cal-
cium carbonate deposits, precipitated in caves. Speleothem growth is
favoured when there is adequate precipitation to produce seepage
water and when the ground surface is vegetated so that this seepage
water is carbonated, while growth is limited by extreme cold, ex-
treme aridity and when the cave is #ooded by water. The isotopic
and mineralogical composition of speleothems is determined by the
regional climatic and environmental conditions at the time of pre-
cipitation. Provided that the d18O of the palaeoprecipitation can be
measured, for example in old groundwater, the d18O in the spele-
othem carbonate can be used to estimate the absolute cave temper-
ature at the time of formation (Hendy 1971; Schwarcz 1986). Cave
temperatures are generally stable, approximating to the mean an-
nual ground temperature of the region. Speleothems can be precisely
dated with the uranium-series method (Schwarcz 1986; Li et al.
1989).

The use of speleothems to reconstruct past climate changes is new
and there are few sites from the tropics. Most of these speleothem
records have been interpreted as providing estimates of relative
changes in various climatic parameters, based for example on an
assumed correlation of growth rates with climate (Shaw and Cooke
1986; Brook et al. 1997), or interpretation of isotope excursions
either on the assumption that they re#ect single climatic parameters
(e.g. Fischer et al. 1996), or by deconvolution of the temper-
ature/precipitation signals using information from other data (Hol-
mgren et al. 1995; Bar-Matthews et al. 1997; Burney et al. 1997).
Lack of independent information on the d18O composition of fossil
cave seepage waters has so far prevented the quantitative interpreta-
tion of tropical speleothem records except in the single case of
Cango Cave in South Africa (Talma and Vogel 1992). We include
this record in the present synthesis because it provides an indepen-
dent check on the MAT reconstruction from South Africa based on
the noble-gas thermometer.

2.4 Lakes

Water-level changes in lakes can occur on a variety of time scales,
from intra-annual to geological. The concomitant changes in water
depth a!ect many of the physical and biological parameters of the
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lake, allowing changes in water level to be inferred from the sedimen-
tary or biostratigraphic records preserved in the deposits in or at the
margins of lakes (Street-Perrott and Harrison 1985; Harrison and
Digerfeldt 1993). Except under exceptional circumstances, when the
seasonal changes in the biota or sediments are preserved in the form
of annual laminations, lake deposits generally only provide records
of the sustained, longer-term (102}104 y) changes in water depth.
Such records have been obtained from most regions of the world
(e.g. see Street-Perrott et al. 1989; Fang 1991; Yu and Harrison 1995;
Tarasov et al. 1996; Jolly et al. 1998a). Changes in water level can be
caused by local factors, e.g. damming of the outlet, geomorphic
changes causing re-routing of river in#ows, changes in catchment
land-use, and tectonism (Dearing and Foster 1986). In general, these
factors a!ect only individual lakes. Regionally synchronous changes
can be assumed to re#ect changes in the hydrological balance, driven
by changes in climate.

Over#owing lakes approach an equilibrium area, such that the
sum of runo! from the catchment and the (positive) water balance
over the lake surface is balanced by discharge (Szestay 1974; Street-
Perrott and Harrison 1985; Mason et al. 1994). Discharge is a mono-
tonic function of lake volume; the form of the function depends on
the morphometry of the lake and its outlet (Henderson-Sellers 1984).
A lake becomes closed (i.e. ceases to over#ow) when the water
balance over the lake surface is negative and can therefore alone
balance the runo! from the catchment. Generally, lake area and
depth vary monotonically with P}E, the (always positive) balance of
precipitation and evaporation over the catchment (Cheddadi et al.
1996). Reconstructed changes in lake status (area, depth, or level) can
therefore be used to infer the sign of changes in mean annual P}E.

Plant-available moisture (PAM) and P}E are estimated indepen-
dently, and are not automatically related. In simple scenarios where
annual precipitation changes while its seasonality and other factors
do not change, both measures must change in the same direction.
But there are other possibilities, especially in seasonal climates. For
example, increased precipitation in the dry season can be balanced
by increased evapotranspiration (promoted by vegetation growth);
this would register as increased PAM and no change in P}E.
Increased precipitation and decreased evapotranspiration in the
already-wet season could conversely produce increased P}E without
increasing PAM (Prentice et al. 1992a).

Although lakes usually provide only qualitative records of climate
changes, several characteristics make them useful for reconstructing
tropical climate changes at the LGM. The climatic controls on the
lake water balance are well known (Street-Perrott and Harrison
1985; Cheddadi et al. 1996). Lake records are widely distributed and
records of former lakes are common in arid areas. Lake bottom and
lake marginal sediments represent a quasi-continuous record of
long-term changes, and generally provide material suitable for 14C
dating.

3 Methods

For each proxy data source, the published literature was surveyed
and a listing was made of all of the sites between 32 3N and 33 3S
providing either qualitative or quantitative palaeoclimatic informa-
tion for the LGM. The LGM was de"ned by a 14C-age bracket of
18$2 ka. Site-speci"c information was obtained either from the
published articles or from public-access data bases. Although the
chronology of every site is based on radiometric methods, the qual-
ity of the dating varies between di!erent parts of the record at a
single site, between di!erent sites and between di!erent types of
records. In addition to giving the total number of dates on which the
chronology is based (where this is an appropriate measure of relia-
bility), we have also provided an assessment of the quality of the
LGM dating control (DC) at each site using the COHMAP scheme
(Webb 1985) implemented according to Yu and Harrison (1995). The
palaeoclimatic information for each site as given in the original
articles is listed systematically. For completeness, Tables 1}4 list all

of the original estimates available at each site, including re-inter-
pretations of the proxy data, re-analyses using improved techniques,
and multiple studies.

Not all of the palaeoclimatic reconstructions in the published
literature are reliable by today's standards. In some cases the under-
lying assumptions and methods cannot be identi"ed. Some other
reconstructions have been based on incorrect conceptual models,
techniques now superseded, or wrong assumptions. We have there-
fore closely evaluated individual records, using explicit criteria to
assess their reliability. Only sites which meet these explicit criteria
are included in the mapped analyses presented later (Fig. 1). In some
cases (e.g. the interpretation of changes in vegetation zone elev-
ations) we have re-analyzed the original data in order to derive a set
of mutually consistent palaeoclimatic estimates. The explicit evalu-
ation criteria used for each data source are described below, as are
the methods employed in any re-analyses. All of the estimates that
we consider reliable, and use in subsequent analyses, are clearly
identi"ed in Tables 1}4. Thus, the data as presented in Tables 1}4
make clear wherever we are using an interpretation that deviates
from the originally published one, and the underlying logic of our
interpretation.

3.1 Estimation of changes in MTCO from pollen and plant
macrofossil records

Most of the estimates of tropical temperature changes given in the
literature (Table 1) have been obtained by estimating an elevation
shift (of one or more climatically sensitive plant species, or of
a vegetation zone) and multiplying by a lapse rate, corresponding to
an estimate of the rate of decline of temperature with elevation. In
some cases the elevation shift has been estimated with some pre-
cision, in which case we use a single value as a point estimate; in other
cases we know only a minimum, a maximum, or a range. Uncertain-
ty is also introduced by the choice of lapse rate. As the relevant
temperature here is the temperature near the ground, the lapse rate
that applies is the &&terrestrial'' or &&slope'' lapse rate. Although values
similar to the free-air moist adiabatic lapse rate (+5K km~1 at
temperatures typical of the lowland tropics) are typically used for
this purpose, terrestrial lapse rates can be signi"cantly greater than
or less than the moist adiabatic lapse rate. Terrestrial lapse rates can
also show large seasonal variations (P.J. Bartlein, J. Guiot, unpub-
lished results). Seasonally and locationally dependent terrestrial
lapse rates can be estimated statistically by smooth three-dimen-
sional interpolation of weather station data on monthly mean tem-
peratures.

In the palaeoecological literature the lapse rate used is not always
speci"ed, and it is seldom possible to determine whether the value
used was an appropriate local terrestrial lapse rate or a generic
"gure. Some di!erences between successive estimates (based on the
same data), and some di!erences between author's estimates ob-
tained from nearby sites, may re#ect varying choices of values for the
lapse rate. We have therefore re-estimated changes in MTCO wher-
ever these were based on inferred change in the elevations of speci"c
vegetation boundaries. In each case we applied a local (modern)
terrestrial lapse rate, evaluated at the latitude, longitude and elev-
ation of the site, using a data set of long-term monthly mean
temperatures from 9176 meteorological stations worldwide (the data
set is an updated version of the one used to generate the IIASA data
set of Leemans and Cramer 1991). Of these stations, 3346 are located
between 32 3N and 33 3S. The lapse rate is calculated as the deriva-
tive with respect to elevation of a non-linear function "tted to the
monthly data in the space of latitude, longitude and elevation using
an arti"cial neural network (Peyron et al. 1988). We distinguish
between those sites where the estimated change in MTCO was
calculated on the basis of a change in treeline and those for which
MTCO was calculated on the basis of changes in forest zones, in
order to be able to allow for a possible contribution of [CO

2
] to

treeline changes.
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Fig. 1 Distribution of sites, according to data type. This map does
not show those sites at which the estimates derived from the litera-
ture (listed in Tables 1}4 for completeness) do not match our criteria
for reliability and which were therefore not used in subsequent

analyses. Site locations have been shifted by up to a few degrees in
data dense areas; however, the location of a given site is the same on
each map on which it appears

Fig. 2a+c Anomalies (LGM minus present) of cold-month temper-
atures (MTCO) based on pollen data. Maximum and/or minimum
estimates based on lapse rate calculations are shown at all sites

where the elevation shift is given in this form d Anomalies of mean
annual temperature (MAT) based on noble gas and speleothem data
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Published estimates of temperature changes from lowland or
plateau regions are more commonly based on a modern-analog
approach. The simplest of these approaches, which has been used for
several sites from China, subjectively assigns a fossil pollen/macro-
fossil assemblage to a modern vegetation type and then assigns the
climatic limits of the modern-day vegetation type to the fossil site.
This approach makes two implicit assumptions: (a) that vegetation
types are discrete and unchanging entities, and (b) that the limits of
speci"c vegetation types are not controlled by speci"c aspects of the
seasonal climate. As both of these assumptions are invalid, we do not
consider temperature estimates based on this type of approach to be
reliable. Instead, we have made an independent estimate of the
temperature change between the LGM and the present day, based
on the published descriptions of the changes in the pollen assem-
blages at each site. We "rst determined which plant functional types
were represented in the fossil and modern samples, using the alloca-
tions of pollen taxa to plant functional types e.g. as given in Yu et al.
(1998). We then estimated the change in temperature by comparing
the minimum MTCO limits required by or the maximum MTCO
limits tolerated by speci"c plant functional types on physiological
grounds, as given in Prentice et al. (1992b). This method does
not directly provide estimates of the change in MTCO, but rather
provides bounding limits for such a change. These estimates, and
the vegetation changes on which they were based, are listed in
Table 1.

More advanced modern-analog approaches are based on optimis-
ing the climatic information that can be derived from the climate
limits of individual species and/or plant functional types within
a fossil pollen/macrofossil assemblage. Such methods require an
extensive training set of modern samples and employ explicit numer-
ical techniques, and thus make it possible (through an examination
of uncertainties) to determine whether the reconstructed climatic
variables are well constrained. In general, well-constrained recon-
structions indicate that the reconstructed climatic variable controls
the distribution of plants through some physical/physiological
mechanism. We have retained those estimates made using explicit
numerical methods (response surfaces in the case of the sites from
eastern North America, direct search for analogs in the case of
sites from Africa) which make use of the independent evidence
o!ered by individual taxa in the pollen assemblage. In cases where
multiple estimates have been made using statistical methods, we
have retained the estimate based on the larger/largest modern train-
ing set. When using temperature reconstructions based on explicit
statistical methods from the zone between 10 3N and 10 3S, we have
assumed that the reconstructed changes in MAT also apply to
MTCO.

Estimates of MTCO anomalies are presented in three parallel
maps (Fig. 2a}c). Point estimates (either from elevation shifts or
from statistical methods) are given on one map. In order that the
reliability of each estimate can be gauged visually, we have used
the quoted errors ($2p) from the statistical methods to scale
dot size in this map; the larger dots indicate the more reliable
estimates. Where point estimates have been derived from elevation
shifts we have applied a conventional error bar of $(20%. In
many cases, however, elevation shifts are given as a minimum value,
a maximum value, or a range of values. We have plotted the
corresponding minimum and maximum cooling estimates on two
separate maps.

3.2 Estimation of changes in MAT from noble gas and speleothem
records

There are six noble gas records from old groundwaters within the
study region (Fig. 1, Table 2); noble gas records obtained from three
other tropical sites either pre- or post-date the LGM (Rudolf et al.
1984; Fontes et al. 1991; Andrews et al. 1994). These estimates of
MAT have all been made with a consistent methodology, and can be
regarded as reliable. Measurement errors are quoted as $2p. The
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measurement errors are about $0.5 to 1 K for most sites, but some
(most notably the Chad Basin and Uitenhage aquifer) have quoted
errors on the order of $2 K. The central estimates of MAT
anomalies are plotted on a single map (Fig. 2d) with dot sizes scaled
by the error bars in the same way as for the point estimates of
MTCO.

We have excluded all but one of the speleothem records of MAT
(Table 3) because, in the absence of independent information on the
d18O composition of fossil cave seepage waters, they only provide
qualitative estimates of changes in temperature. The speleothem
record is temporally more highly resolved than the noble gas record
from groundwater. We have therefore estimated the LGM temper-
ature di!erence after applying a 1000-y moving average (comparable
to the minimum interval over which the groundwater record is likely
to be smoothed). We have computed a likely estimation error
($0.03K) on this value by recalculating the temperature change
using a 5000-y moving average.

3.3 Analysis of the relation between temperature anomalies
and elevation

We have analysed the estimates (a) of vegetation elevation shifts and
(b) of change in MTCO (for sites that span a wide range of elev-
ations) using ordinary least-squares linear regression, with site elev-
ation as the predictor variable. As shown in the Appendix, MTCO
changes are appropriately estimated from elevation shifts by
using modern lapse rates, even if the lapse rates were di!erent in
the past. If elevation shifts are regressed against site elevation,
the resulting intercept estimates the climatically induced elevation
shift at modern sea level while the slope estimates the relative change
in terrestrial lapse rate, if such a change occurred. If the MTCO
estimates are regressed against site elevation, the intercept esti-
mates the change in MTCO at modern sea level, and the slope
estimates an absolute change in terrestrial lapse rate (see Appendix).
We have calculated such regressions in two ways. In the main
analyses we used only those sites for which point estimates of
elevation shifts or temperature changes are available; this approach
is likely a priori to give the most reliable results and proved in
practice to "t the data best. As a check on the robustness and
generality of the results we also performed regressions based on all
estimates, including maximum and minimum estimates as indepen-
dent data points.

Relationships between temperature anomalies and site elevation
can be calculated from the entire data set to obtain approximate
overall average estimates, or for subregions to investigate regional
variations. We used such regional analyses to reduce the estimated
MTCO and MAT changes to modern sea level taking into account
inferred regional changes in lapse rate between LGM and present, as
estimated by the regional regression slopes. This procedure reduces
the data to a form best suited for comparison with the magnitudes
and spatial patterns of changes in sea-surface temperatures (SSTs),
as estimated from proxy data in marine sediments.

3.4 Estimation of changes in PAM from pollen and plant
macrofossil records

The estimates of changes in moisture regimes at the LGM (Table 1)
are based on observed present-day moisture requirements of indi-
vidual plants in the fossil assemblage. Although most of the esti-
mates of changes in moisture-balance parameters in the literature
are referred to as changes in precipitation, they are better character-
ised as PAM. Given the di$culty in dissociating the potential e!ect
of temperature and lowered [CO

2
] from changes in precipitation,

we assume that quantitative estimates of changes in PAM (or pre-
cipitation) are unreliable. It seems plausible to assume that the sign
of the change in PAM is robust, however, and we include it here for
comparison with the P}E reconstructions.
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Table 4 Sites providing estimates of changes in mean annual P}E, based on lake status data

Site Country Latitude Longitude Elevation Number DC D P}E References
(3) (3) (m) of 14C

dates

The Americas
Cochise USA 32.13 !109.85 1260 35 1D 1 Street-Perrott et al. (1989)
Salt Basin USA 31.83 !105.00 1087 5 1C 1 Wilkins and Currey (1997)
Annie USA 27.30 !81.40 36 9 7 !1 Harrison (1988)
Patzcuaro Mexico 19.58 !101.58 2044 9 2D !1 Street-Perrott et al. (1989)
Chichancanab Mexico 19.50 !88.75 38 4 7 0 Street-Perrott et al. (1989)
Mexico Mexico 19.50 !99.00 2240 26 7 0 Street-Perrot et al. (1989)
Texcoco Mexico 19.45 !99.00 2022 4 2C 1 Bradbury (1989)
Wallywash Jamaica 17.95 !77.80 7 11 6D !1 Street-Perrott et al. (1989)
Ciega Colombia 6.50 !72.30 4000 3 3C !1 Street-Perrott et al. (1989)
Fuquene Colombia 5.50 !73.75 2580 3 6C !1 Street-Perrott et al. (1989)
El Abra Colombia 5.00 !74.00 2570 8 6C 0 Street-Perrott et al. (1989)
El Junco Equador !0.87 !89.45 650 8 7 !1 Street-Perrott et al. (1989)
Titicaca Peru/Bolivia !16.00 !69.25 3809 14 1D 1 Wirrman and Mourgiart

(1995)

Middle East and Africa
Lisan/Dead Sea Jordan/Israel 31.50 35.50 !395 45 3D 1 Street-Perrott et al. (1989)
Saoura Algeria 30.00 !2.00 400 20 6D 1 Street-Perrott et al. (1989)
Kadda Algeria 26.20 !0.88 250 3 2D 1 Street-Perrott et al. (1989)
Nabta Egypt 23.00 31.00 250 33 7 0 Street-Perrott et al. (1989)
Bilma Niger 18.75 13.00 310 10 7 0 Street-Perrott et al. (1989)
Mundafan S. Arabia 18.53 45.42 870 32 7 0 Street-Perrott et al. (1989)
Fachi Niger 18.12 11.67 275 9 7 0 Street-Perrott et al. (1989)
Jebel Marra Sudan 13.00 24.23 2000 6 7 1 Street-Perrott et al. (1989)
Abhe Ethiopia/Djibouti 11.25 42.00 242 84 4D 1 Jolly et al. (1998a)
Ziway-Shala Ethiopia 7.75 38.67 1558 52 7 1 Street-Perrott et al. (1989)
Bosumtwi Ghana 6.50 !1.42 100 51 2D !1 Jolly et al. (1998a)
Turkana Kenya 5.00 36.00 375 51 7 0 Street-Perrott et al. (1989)
Barombi-Mbo Cameroon 4.39 9.24 301 16 2C !1 Jolly et al. (1998a)
Mobuto Sese Seko Uganda/Zaire 1.50 31.00 619 7 5C 0 Street-Perrott et al. (1989)
Bogoria Kenya 0.30 36.10 990 33 7 !1 Jolly et al. (1998a)
Nakuru-Elmenteita Kenya !0.42 36.17 1750 22 4D !1 Street-Perrott et al. (1989)
Naivasha Kenya !0.68 36.33 1890 10 4C 1 Street-Perrott et al. (1989)
Victoria Uganda/Tanzania/Kenya !1.00 33.00 1134 34 3D !1 Street-Perrott et al. (1989)
Magadi Kenya !1.83 36.30 600 22 5C 1 Jolly et al. (1998a)
Manyara Tanzania !3.62 35.82 945 14 1C 1 Street-Perrott et al. (1989)
Tanganyika Burundi/Tanzania/

Zambia/Zaire
!6.03 28.50 773 29 1D !1 Jolly et al. (1998a)

Cheshi-Mweru Wantipa Zambia !8.87 29.68 928 4 7 0 Street-Perrott et al. (1989)
Malawi Malawi !12.00 34.50 622 25 6C 1 Jolly et al. (1998a)
Alexandersfontein South Africa !28.83 24.80 1119 39 6C 1 Street-Perrott et al. (1989)
Breek Been Kolk South Africa !30.80 20.10 800 1 6C 1 Street-Perrott et al. (1989)
Haaskraal South Africa !31.42 24.37 1900 2 7 !1 Street-Perrott et al. (1989)

Asia and Australia
Chabyer China 31.3 84.1 4421 3 7 1 Qi and Zheng (1995)
Frome Australia !30.75 139.83 !2 46 7 !1 Harrison (1989)
Storey's Australia !31.52 118.03 300 2 2D 0 Harrison (1989)

The quoted latitude and longitude are for a location in the approximate centre of the basin; the elevation is that of the modern lake surface, or the lowest
elevation is the basin if there is no modern lake. The number of radiocarbon dates indicates those used to construct a site chronology for the lake-level history,
usually the number of reliable dates from all sites in the basin. The number may therefore di!er from the number given in Table 1 for the same site. Dating
control (DC) is as described in the caption to Table 1

3.5 Estimation of changes in P}E from lake records

Most of the data used to reconstruct P}E changes (Table 4) are taken
from the Oxford Lake-Level Data Base (OLLDB: Harrison
1988, 1989; Street-Perrott et al. 1989) or from the African Lake Status
Data Base (ALSDB: Jolly et al. 1998a). These data bases use a consis-
tent approach to the reconstruction of lake level records. Sites from
the tropical Americas and China which have been published since the
completion of the OLLDB have been coded for this study using the
same approach. The coding scheme (low, intermediate, high) used by
the OLLDB is less well resolved than the coding schemes used by
more modern lake data bases, including the ALSDB. For this reason,
as with PAM, we give only the sign of the inferred change in P}E.

We do not use evidence from lake sediments (for MTCO,
PAM or P}E) at any site where there is unequivocal evidence
of a sedimentary hiatus including the LGM. The occurrence of
a hiatus is often used as evidence for a period when the lake
basin was dry, implying low P}E (e.g. Ledru et al. 1998). With-
out a detailed sedimentary analysis, however, one cannot tell
whether such a hiatus was caused by drier conditions during
the LGM, or the removal of LGM sediments during a post-
LGM dry phase (e.g. Street-Perrott and Harrison 1985). In
a few cases where there may be a hiatus according to one
interpretation of the stratigraphy, we have used the informa-
tion, but Table 1 indicates the possible existence of a
hiatus.
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4 Results

4.1 MTCO

The reconstructions of MTCO (Table 1, Fig. 2a}c)
show a general lowering of temperature, with the ma-
jority of tropical sites cooling by !2 to !6 K. There is
also some indication of geographic pattern. Relatively
slight cooling by +!2 K is shown consistently at sites
on islands in the southern tropical Paci"c. Relatively
large cooling, by +!5K or more, is shown at numer-
ous sites (including low-elevation sites) in the Neo-
tropics (C and S America). Cooling by !6 K or more
is shown at some high-elevation sites.

The largest cooling is shown in the northern sub-
tropics (Florida and southern China). In Florida,
response-surface reconstructions of MTCO indicate
winter temperature anomalies of !8 to !15 K
(Prentice et al. 1991; Webb et al. 1993). In southern
China, cool conifer, cool mixed and temperate de-
ciduous forests replaced the modern warm mixed and
tropical evergreen forests at the LGM (Yu et al. unpub-
lished data). Reconstructions based on the cold-toler-
ance limits of plant types represented in the pollen
spectra from southeastern China yield estimates of the
LGM temperature anomaly of at least !7 to !10K.
Note that these are cold-month anomalies, which at
subtropical latitudes need not resemble MAT
anomalies because of the seasonality of the temperature
regime.

4.2 MAT

Seven published sites to date provide reliable estimates
of the change in mean annual ground temperature at
the LGM (Fig. 2d), but only two of these (Chad Basin,
Serra Grande Aquifer) lie in the tropics sensu stricto.
The data indicate a lowering in MAT in the recharge
zones of each catchment in the range +!4 to !6 K.
The range of MAT anomaly estimates is thus less than
the range of MTCO anomaly estimates. However, there
are no geochemical MAT estimates e.g. from the Paci"c
islands or Indonesia that could be compared with the
relatively small MTCO anomaly estimates obtained
there. Thompson et al. (1995) inferred a larger annual
cooling of !8 to !12 K from d18O measurements in
a low-latitude ice core at about 6000 m, which is consis-
tent with our "nding of larger MTCO anomalies at
higher elevations.

MAT and MTCO estimates diverge markedly only
in the northern subtropics, where MAT anomalies con-
tinue to be around !4 to !6 K, while MTCO esti-
mates of the cooling are !8 K or larger. A simple
hypothesis to explain this divergence is that greater
cooling in the winter season is produced by advection
of cold air from the adjacent continents.

4.3 Temperature anomalies and elevation

When reported elevation shifts of vegetation belts are
regressed against the elevation of the site at which each
shift was estimated (Fig. 3; Table 5), it becomes clear
that the magnitude of these shifts increases systemati-
cally with height above modern sea level. The correla-
tion between elevation change and modern elevation
(based on point estimates) is 0.45 for the whole study
region, rising to 0.53 when only the equatorial belt
(15 3S}15 3N) is considered. The corresponding regres-
sions are signi"cant (P(0.02). The estimated average
vegetation zone depression is !500 m (or !465 m for
the equatorial belt) at modern sea level with !0.19 m
(!0.24 m for the equatorial belt) additional lowering
for each 1 m increase in elevation. The minimum and
maximum estimates tend to bracket the main regres-
sion line, and there is no systematic relationship
between site elevation and the residuals from the re-
gression, indicating that the linear regression repres-
entation is appropriate for these data. The regression
relationship for all sites remains signi"cant (P40.01)
when all of the data, including maximum and minimum
estimates, are used. The estimated vegetation zone de-
pression is somewhat larger (!720 m) and possibly
in#ated by the inclusion of high maximum estimates,
while the estimated increase with elevation is somewhat
smaller (!0.11 mm~1).

Estimated MTCO anomalies tell essentially the same
story. The data used for these analyses also include
statistical estimates of change in MTCO, but they ex-
clude estimates from the areas of extreme winter cool-
ing in Florida and south China. The analyses based on
point estimates give r"0.44, rising to 0.48 when only
the equatorial belt is considered, and are signi"cant
(P+0.02). The regression indicate an average cooling
at modern sea level by !2.9 K (!2.8 K for the equa-
torial belt) with lapse rates overall steeper by 0.8 (0.79
for all sites, 0.81 for the equatorial belt) K km~1. Re-
gressions including all estimates are again signi"cant
(P(0.002 and (0.02 for all sites and the equatorial
band respectively) and similar to the regressions based
on point estimates, although the estimated cooling at
modern sea level is slightly larger (!3.6, or !3.9 K
for the equatorial belt) and the estimated lapse rate
increase is somewhat larger (!0.9, or !0.8 K km~1
for the equatorial belt).

The estimates based on treeline lowering, which
could in principle be in#uenced by low [CO

2
], do

not systematically depart from these regressions
(Fig. 3). When sites re#ecting treeline changes are
removed from the analyses, the signi"cance of the re-
gressions is reduced to P(0.4 (due mainly to the
insu$cient sample size) yet the estimated regression
slopes and intercepts remain almost identical: we esti-
mate a depression at modern sea level by !510 m
increasing by !0.18 m per 1 m of height, or a MTCO
reduction at modern sea level of !3.0 K increasing by
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Table 5 Dependence of cold-month temperature (MTCO) anomalies on elevation: summary of regression results. Slope estimates given in
parentheses are non-signi"cant (P'0.05). *h(0) is estimated change in vegetation zone elevations at modern sea level; *¹(0) is estimated
change in MTCO at modern sea level; n is number of points; r is correlation coe$cient; P is probability of the null hypothesis, i.e. no elevation
e!ect

Results based on point estimates
Elevation shifts MTCO anomalies

*h(0) Slope n r P *¹(0) Slope n r P
(m) (m m~1) (K) (K km~1)

All sites! !493 !0.19 26 0.45 0.019 !2.88 !0.79 28 0.44 0.018
Equatorial belt only !465 !0.24 19 0.53 0.020 !2.81 !0.81 21 0.48 0.028
Non-tree line only !512 (!0.18) 13 0.26 0.400 !2.99 (!0.60) 15 0.26 0.350

Neotropical region !1063 (0.09) 7 0.31 0.510 !5.09 (0.25) 7 0.19 0.680
Indian Ocean region !315 !0.24 10 0.74 0.010 !2.23 (!1.04) 12 0.47 0.120
Paci"c Ocean region !107 !0.18 8 0.98 (0.001 !1.03 !2.21 8 0.98 (0.001

Results based on point, maximum and minimum estimates
Elevation shifts MTCO anomalies

*h(0) Slope n r P *¹(0) Slope n r P
(m) (m m~1) (K) (K km~1)

All sites! !721 !0.11 64 0.28 0.002 !3.62 !0.92 66 0.37 0.002
Equatorial belt only !796 (!0.08) 55 0.20 0.140 !3.94 !0.84 57 0.31 0.020
Non-tree line only !834 (0.03) 34 0.04 0.840 !4.05 (!0.22) 36 0.05 0.790

Neotropical region !1287 (0.06) 24 0.19 0.330 !6.01 (!0.24) 28 0.06 0.770
Indian Ocean region !434 !0.19 22 0.52 0.020 !2.59 !0.80 22 0.42 0.050
Paci"c Ocean region !106 !0.37 15 0.71 (0.001 !1.06 !1.99 15 0.71 (0.001

!Excluding S China, SE USA.

!0.6 K km~1. Thus, the relationships with eleva-
tion are not wholly dependent on treeline shifts, and
the observed treeline shifts conform to the same
pattern as the shifts of vegetation zones at lower
elevations.

Inspection of the spatial patterns in Fig. 2 suggests
however that the cooling was not spatially homogene-
ous, even at constant elevation. Some of the scatter
around the global regression lines might be due to
geographic variations in the sea-level cooling, in the
relationship with elevation, or both. We therefore per-
formed separate analyses for three regions de"ned
a priori as follows: the Neotropical region, represented
by records from Central America and the northern
part of South America; the Indian Ocean region, repre-

b&&&&&&&&&&&&&&&&&&&&&&&&

Fig. 3a+e Cooling as a function of site elevation: a uncorrected
elevation shifts: all data; b estimated cold-month anomalies: all data
including statistical estimates, but excluding northern subtropics;
c+e as b but for Neotropical region, Indian Ocean region, Paci"c
Ocean region. Fitted lines are least-squares linear regressions (Table
5). Solid lines and curve envelopes refer to regressions based on point
estimates; dashed lines to regressions based on all estimates. Symbols:
d point estimates,#minimum estimates (i.e. smallest cooling),
!maximum estimates (i.e. greatest cooling), Symbols in green are
for sites where the elevation change refers to the upper forest limit
(treeline) and those in red to non-treeline sites

sented by records from South and East Africa, India
and Indonesia; and the Paci"c Ocean region, including
Papua New Guinea and Paci"c island sites (Fig. 3;
Table 5). Thus partitioned, the data show considerable
geographic patterning both in the sea-level temper-
ature change estimates and in the implied changes in
lapse rate. For the Neotropical region, we estimate the
largest vegetation zone depression (!1100 m) and
cooling (!5.6 to !5.7 K) with no signi"cant elevation
e!ect. For the Indian Ocean region, the estimates are
similar to those for the data set as a whole: !2.2 to
!2.6 K cooling at modern sea level, increasing by
!0.8 to !1.0 K km~1, with r"0.42 to 0.47 and P"

0.12 (for point estimates) or 0.05 (for all estimates). For
the Paci"c Ocean region, we estimate the smallest cool-
ing (!1.0 to !1.1K) at modern sea level, increasing by
!2.0 to !2.2 K km~1, with r"0.98 for point esti-
mates, r"0.71 for all estimates, and high signi"cance
(P(0.001) in both analyses.

These regional di!erences in sea-level cooling can be
seen in Fig. 2a}c, but are partially confounded by the
proximity of sites at very di!erent elevations. This
confounding of geographic and elevation e!ects is most
marked in Indonesia and Papua New Guinea. The
geographic patterns are brought out more clearly in
Fig. 4, where the estimated MTCO and MAT
anomalies from sites at (1500 m elevation have been
reduced to modern sea level using the main regional
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Fig. 4 Estimated temperature anomalies (MTCO or MAT) at mod-
ern sea-level based on sites at elevation (1500 m, for comparison
with sea-surface conditions. Sites for which only a maximum or
a minimum estimate of the temperature change is available are not
included on this map, with the exception of three sites from the same
region of southern China. Vegetation changes at each of these three

sites yield either a maximum or a minimum estimate of !10 K,
indicating that the actual change was very close to this value.
A temperature correction is made for sites in the Indian Ocean and
Paci"c Ocean regions, using the slope coe$cients (slope, K km~1)
based on point estimates in Table 5

Fig. 5 a Directions of change in plant-available moisture (PAM) inferred from pollen and plant macrofossil data; b directions of change in
precipitation minus evapotranspiration (P}E) inferred from lake level reconstructions

regression results. (Sites outside the regions are shown
without reduction to sea level. Any such reduction
would have little e!ect because these sites are all at
low elevations.) The smaller estimates of sea-level
cooling, are associated with the southern tropical
Paci"c and regions bordering the Indian Ocean while
larger estimates characterize the northern Neotropics,
West Africa and the northern subtropics, indicating
a strong geographic pattern that might be related to
geographic variation in SSTs.

4.4 PAM

Eighty sites provide qualitative records of the change
in PAM between the LGM and present. PAM was
apparently less than today across most of the tropi-
cal zone (Fig. 5). Only three regions show condi-
tions wetter than today: the now-arid regions of
western North America, high elevation sites in the
Andean Altiplano, and sites in montane Papua Guinea.
However, there are large areas (e.g. northern Sahara
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and the Middle East) without information about chan-
ges in PAM.

4.5 P}E

Forty lake sites record qualitative changes in mean
annual P}E between the LGM and present (Fig. 5).
A more positive mean annual P}E is recorded in the
now-arid basins of western North America, and on the
southern Andean Altiplano. Records from the central
Sahara suggest that conditions were as dry as today.
High lake levels in the northwestern Sahara (Conrad
1969; Causse et al. 1988) may re#ect problems in the
interpretation or dating of the sites involved but, given
that lakes in the Mediterranean region were high (Pren-
tice et al. 1992a; Harrison and Digerfeldt 1993) and that
sites in the Middle East also indicate a more positive
P}E (Roberts and Wright 1993), it seems possible that
these lakes are fed by runo! from the Atlas mountains
and are thus registering conditions unrelated to the
local climate (Street-Perrott et al. 1989).

Otherwise, P}E was less than today across the
tropics, from central America into western Africa. In
equatorial East Africa the lakes show conditions
similar or drier than present to the west of about 34 3E
and similar or wetter than present to the east. A site
from the Tibetan plateau registers a more positive P}E
balance than today. Some sites from southern Africa
imply a more positive P}E than today, but the single
site from the Australian subtropics registers drier con-
ditions.

Data on PAM and P}E are to some extent com-
plementary in terms of the regions included, and this
gives rise to a super"cial di!erence between the maps.
However, in areas where both types of data exist, the
direction of change is almost consistently the same in
both. A possible exception is the Tibetan plateau,
where preliminary results from further sites con"rm
high lake levels while pollen evidence suggest lower
than present PAM.

The sites showing wetter conditions than present in
the tropics sensu stricto, either in PAM or in P}E, are
all at high elevations. This suggests that strong cooling
at high elevations might have disproportionately re-
duced atmospheric evaporative demand, leading to in-
creased P}E.

5 Discussion and conclusions

5.1 Temperature changes

MAT and MTCO are expected to vary in broadly
similar ways at low latitudes because of the low sea-
sonality of insolation at low latitudes, which o!ers
limited scope for changes in temperature seasonality.

Yet the estimates from di!erent types of data need not
a priori agree since they have di!erent sensing charac-
teristics. In particular, the temporal smoothing in-
herent in the noble gas technique means that estimates
of MAT obtained with this technique may include a
component due to extreme events occurring in a broad
temporal interval, possibly even including Heinrich
events. In the mid-latitudes, MAT and MTCO
anomalies could more easily diverge as the summer and
winter temperature regimes there are fundamentally
di!erent. We "nd a systematic di!erence between esti-
mated MAT and MTCO anomalies in the northern
subtropics (Fig. 2). However, in the tropics sensu stricto
and in the southern subtropics the MAT estimates do
not systematically di!er from the MTCO estimates.
The one speleothem MAT estimate (in southern Africa)
resembles the nearby noble-gas MAT and MTCO esti-
mates, despite the di!erences in the sensing character-
istics of the three data.

The geochemical estimates of MAT lowering give the
super"cial impression of a relatively uniform tropical
and subtropical cooling by !4 to !6 K, whereas the
pollen-based estimates of MTCO lowering vary more
widely. However there are no demonstrable inconsist-
encies between the two types of record, except in the
northern subtropics. The MTCO estimates are more
numerous and spread across a wider range of modern
environments. Relatively slight cooling is shown by
pollen data from regions adjoining the Indian Ocean
and from islands in the southern Paci"c, while large
cooling is shown at high elevations in all regions. There
are as yet no geochemical estimates from the regions
where the MTCO estimates show only slight cooling.
Nor are there geochemical estimates from high elev-
ations, apart from the ice-core estimate of Thompson
et al. (1995) from '6000 m. This ice-core estimate
supports our "nding of extreme cooling at very high
elevations, even though the MTCO data from the
Neotropics show no signi"cant dependence on elev-
ation in the lower elevation range (0}3500 m).

In the northern subtropics, there is a marked diver-
gence of winter temperature anomalies from the MAT
anomalies. A simple explanation is that winters were
cooled by much more than the other seasons, due to
enhanced advection of anomalously cold air from the
continental interiors. This explanation is consistent
with PMIP model results that consistently show large
wintertime cooling of both the interior of North Amer-
ica and E Asia (Pinot et al. this volume). Quantitative
reconstructions of MTCO lowering by !15 to !19 K
have also been derived from sites at about 35 3N in the
Mediterranean region, suggesting a similar climatolo-
gical explanation for extreme cooling in Europe (Pe-
yron et al. 1998).

A robust feature of the MTCO reconstructions is
their dependence on elevation, particularly in the
Palaeotropics (Fig. 3). Taking this elevation e!ect into
account, we estimate that tropical temperatures were
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depressed by on average !2.9 K at modern sea level.
After reducing the estimated temperature anomalies to
modern sea level using regional relationships between
MTCO anomalies and elevation, we obtain a more
spatially coherent geographic pattern (Fig. 4) allowing
us to estimate that the southern tropical Paci"c and
lowland regions bordering the Indian Ocean cooled by
!2 K or less while lowland Central and South Amer-
ica and regions bordering the tropical Atlantic cooled
by !4 to !6 K. This "nding is consistent with the
conclusions of Colinvaux et al. (1996) concerning the
Neotropics, while indicating that cooling in other
tropical lowland regions was less dramatic.

5.2 Land}ocean connections

CLIMAP Project Members (1981) showed that there
were important regional di!erences in the magnitude of
sea-surface cooling at the LGM, and speci"cally that
there were some tropical oceanic regions where the
cooling was small or where the reconstructions imply
conditions warmer than present (including the south-
ern Paci"c gyre). However, Broccoli and Marciniak
(1996) have pointed out that the warm tropical Paci"c
reconstruction in CLIMAP relies on cartographic
extrapolation from a few data points with high uncer-
tainty. Our reconstructions of temperature anomalies
reduced to sea level (Fig. 4) also show geographic
structure. This structure is moreover consistent in cer-
tain important qualitative respects with geographic
patterns shown in the CLIMAP (1981) reconstruction
and in the original CLIMAP data set (Broccoli and
Marciniak 1996). In particular, the areas of weak cool-
ing (or warming) shown by CLIMAP for the southern
Paci"c and northern Indian Oceans agree qualitatively
with our estimates of relatively slight cooling at sea
level on adjacent land areas, while the stronger cooling
shown by CLIMAP in the Caribbean and eastern
subtropical Paci"c agrees qualitatively with the evid-
ence for relatively large cooling at sea level in Central
America.

The average sea-surface cooling implied by the re-
constructions from CLIMAP Project Members (1981)
is only +!1.5. Several recent studies however have
suggested that tropical SST anomalies at the LGM
must have been colder, perhaps by several degrees, than
originally reconstructed by CLIMAP (Anderson and
Webb 1994; Webb et al. 1997). Studies based on re-
examination of the foraminiferal data (Prell et al. 1996;
Anderson and Webb 1998), stable isotopes in
foraminifera (Patrick and Thunell 1997), Sr/Ca ratios
in corals (Guilderson et al. 1994) and alkenone
palaeothermometry (Sikes and Keigwin 1994; Bard
et al. 1997, 1998) have all indicated a tropical ocean
surface colder than CLIMAP. Some studies have im-
plied that there was a general cooling of the tropical
ocean by as much as !5 K (e.g. Guilderson et al.

1994). The terrestrial data clearly support the view that
the tropical ocean surface at the LGM was colder than
indicated by the CLIMAP reconstruction (Stute et al.
1995). At the same time, the data limit the plausible
magnitude of the cooling, especially when the e!ect of
lowered sea level (!120 m) is taken into account. This
lowering itself implies that any point on the present
land surface would be cooled by about !0.5 K, even if
SSTs did not change. Thus, the terrestrial data imply
that the tropical average SST anomaly was only about
!2 to !2.5 K. This inference is consistent with the
average LGM cooling of the tropical ocean as recon-
structed from alkenone palaeothermometry (Bard et al.
1998).

Our estimate of the tropical average SST anomaly is
consistent with results from coupled atmosphere-ocean
models of &&intermediate complexity'' (Ganopolski et al.
1998; Weaver et al. 1998). The PMIP simulations with
mixed-layer ocean models tend to fall into two classes:
those that produce a uniform tropical cooling by
+!5 K or more, and those that cool the tropical
ocean in global average by about the same as the
CLIMAP reconstruction or by a further+!1K.
Within the latter class, some models are better able to
reproduce the spatial patterns of cooling suggested by
the terrestrial data (Pinot et al. this volume). The
coupled atmosphere-ocean dynamic simulation by
Bush and Philander (1998) also shows spatial patterns
that are broadly consistent with the terrestrial data,
with anomalies of +!2K in the southern Paci"c and
Indian Oceans contrasting with +!4 to !6 K in the
Paci"c to the west of Central America and the northern
part of South America. Comparable features are shown
by the coupled model used by Weaver et al. (1998),
which includes a full three-dimensional ocean model.

5.3 Water balance

The two independent, qualitative indicators of change
in water balance, PAM based on palaeoecological re-
cords and P}E based on lake level records, like the
various temperature indicators are not necessarily con-
gruent a priori but appear to be so on the basis of the
mapped observations within the region of study. Thus,
the changes in PAM and P}E are both positive in
western North America and on the Andean Altiplano.
They are both negative in the equatorial zone of the
Americas and western Africa, and in Australia. Al-
though the PAM and P}E anomaly maps (Fig. 5)
appear di!erent at "rst glance, this re#ects the fact that
there are very few estimates of PAM in regions that are
arid today and were wetter at the LGM.

The agreement between PAM and P}E is consistent
with a simple hypothesis that the tropical land areas
received less precipitation annually, while the south-
ward shift of the jet stream (COHMAP Members 1988;
Kutzbach et al. 1993; Kutzbach et al. 1998) brought
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increased precipitation to the southwestern USA. The
apparent wetness of high elevations may be due to
strong cooling, reducing evaporative demand more
than any increase in precipitation at these elevations.
Generally reduced precipitation in the tropics and sub-
tropics and enhanced precipitation in the path of
southward-shifted jet streams in the Northern Hemi-
sphere are also consistent features of PMIP simulations
for the LGM (Pinot et al. this volume).

5.4 Possible causes of anomalous temperature-elevation
relationships

Several Quaternary scientists have discussed the hy-
pothesis that tropical lapse rates might have been
steeper at the LGM than today (e.g. Van der Hammen
1974, 1991; Walker and Flenley 1979; Bakker 1990;
Van der Hammen and Absy 1994). The hypothesis was
proposed initially to explain an apparent discrepancy
between CLIMAP (1976, 1981) tropical SST estimates
for the LGM and the evidence for ELA depressions of
1000 m or more in tropical mountain regions. Recon-
ciliation of these two sets of observations in physical
terms has proved challenging (Rind and Peteet 1985;
Webster and Streten 1978; Broecker and Denton 1990;
Rind 1990; Betts and Ridgway 1992).

The MTCO data compiled here indicate that the
e!ective (i.e. terrestrial) lapse rates at the LGM were
indeed steeper than present in some regions, although
there is insu$cient evidence for this e!ect in the Neo-
tropics. A complete treatment of possible mechanisms
behind altered temperature-elevation relationships
must take account of ELA data as well as vegetation
shifts, because the use of both types of information
provides additional constraints on the vertical pro"les
of precipitation and atmospheric water vapour content
(Broecker and Denton 1990; Broecker 1997). A great
deal of new information on ELA shifts has also come
into existence during the last decade (e.g. Ono 1988;
Schubert and Clapperton 1990; Rodbell 1992; Fox and
Bloom 1994; Helmens et al. 1996; Sharma and Owen
1996; Thouret et al. 1996; Ono and Naruse 1997).
Compilation of tropical ELA data is underway, and
will form the subject of a separate review (Part II of
this synthesis). Here we draw attention to a variety of
observations and model results that make increased
terrestrial lapse rates at LGM a physically plausible
possibility.
1. Thermodynamic considerations dictate that the

moist adiabatic lapse rate steepens as surface tem-
perature is lowered (e.g. Hartmann 1994, p. 354;
Betts and Ridgway 1992), and free-air lapse rates in
the tropics are often close to the moist adiabatic rate
(Webster and Streten 1978). Given an ocean surface
colder than CLIMAP, the thermodynamic e!ect
should be stronger than was estimated by Rind and
Peteet (1985) based on CLIMAP SSTs. Indeed, Rind

and Peteet (1985) found that an arti"cial lowering of
tropical SSTs by 2 K relative to the CLIMAP recon-
struction produced signi"cantly steeper lapse rates
than in their &&standard'' LGM experiment. Webb
et al. (1997), using the GISS atmospheric model
coupled to a mixed layer ocean model, simulated
a substantial LGM cooling of the tropical ocean,
also accompanied by a signi"cant increase in lapse
rate.

2. Observations on the relationship between freezing
heights and SST anomalies (Diaz and Graham 1996)
indicate a sensitivity of as much as 600m (equivalent
to 3}5K at +6000m elevation) for each 1K change
at the surface. This result implies an ampli"cation of
changes in temperature at the surface of a similar
order to that which we infer from the palaeodata.
Diaz and Graham (1996) tentatively attribute the
ampli"cation to a tendency for warmer sea surface
conditions to create an intensi"ed hydrological
cycle, causing the vertical structure of the atmo-
sphere to more closely approach the moist adiabatic
condition.

3. Using CLIMAP SSTs in a simulation with the
LMDH atmospheric model, Pinot et al. (this vol-
ume) simulated an increase in tropical free-air lapse
rates that could account for +40% of the elevation
e!ect estimated in this work. They also showed
a spatial pattern in this e!ect similar to that shown
here, with the strongest lapse rate increase in the
Paci"c region, and the weakest in the Neotropics.

4. A biological feedback on lapse rates might be pro-
duced by reduced vegetation cover at the LGM.
&&Tropical deforestation'' experiments with GCMs
typically show reduced latent-energy #ux and con-
vective activity due to surface energy-balance cha-
nges that accompany the prescribed reduction in
vegetation cover (e.g. Dirmeyer and Shukla 1994;
Polcher 1995; Zhang et al. 1996a, b; see also Potter
et al. 1975 for results obtained with an early, zonally
averaged climate model). Reduced latent-energy #ux
and convective activity lead in turn to cooling and
drying of the middle troposphere, contributing to
a regional steepening of free-air lapse rates. Such
e!ects have yet to be investigated in simulations of
the LGM climate.

5. The di!erence between terrestrial and free-air lapse
rates may admit processes that could further amplify
the impact of low-elevation temperature changes on
high-mountain climates, relative to those processes
currently included in atmospheric models. Ground
temperature in high mountains is close to the tem-
perature of overlying air, while at low elevations it
can be several degrees higher. Terrestrial lapse
rates are thus likely to be steeper than lapse rates
derived from radiosonde observations, and steeper
than those simulated by atmospheric models in
which mountains are represented in a highly
smoothed manner. Such e!ects may account for the
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large variations (both seasonal and spatial) which
appear when lapse rates are estimated from clima-
tological data, and which are considerably larger
than the proposed di!erence in terrestrial lapse rates
between LGM and present.

6. Further insight may come from observational and
modelling studies of warmer than present climates.
Pollen-based reconstructions for the mid-Holocene
have shown that growing-season warming, relative
to present, was ampli"ed at higher elevations in the
mountains of Europe (Huntley and Prentice 1988;
Cheddadi et al. 1996) and eastern North America
(Bartlein and Webb 1985). Cheddadi et al. (1996)
inferred a lapse rate+1K km~1 less steep than
present in the generally warmer climate of 6000 y BP
in Europe. A recent projection by Martin et al.
(1997) of the e!ect of doubling CO

2
on high moun-

tain climates, using the CROCUS snow model,
showed that the simulated upward retreat of snow-
line is considerably greater than would be expected
based only on the sea-level temperature increase and
the thermodynamic e!ect on free-air lapse rates.
We infer from these various lines of reasoning that

there may well be a common mechanism linking obser-
vations of lowered SSTs at LGM to a weaker than
present hydrological cycle, relative aridity on land as
shown by PAM and P}E reconstructions, land-surface
cooling as shown by a variety of data sources, and
increased tropical lapse rates as shown by the recon-
structions of MTCO at low and high elevations. A
more complete analysis of the problem must however
await the compilation of ELA data that is now in
progress, and a more quantitative analysis of the pro-
cesses that takes into account the full range of con-
straints provided by palaeodata for the LGM.

5.5 Concluding remarks

A relatively clear picture has emerged from super"-
cially heterogeneous data describing the state of the
land surface around the LGM. In particular, apparent
di!erences between di!erent data sources (e.g. PAM
versus P}E; geochemical estimates of MAT versus
plant-based estimates of MTCO) largely disappear
when the di!erent spatial and elevational distributions
of the data are taken into account. The single region
where available MAT and MTCO anomaly estimates
con#ict (SE USA) is a subtropical region with a strong-
ly seasonal climate today and where there are good
reasons to expect that the seasonality was even greater
at the LGM, allowing MTCO to be reduced more
strongly than MAT. Our "ndings also have implica-
tions for the consistency of sea-surface temperature
reconstructions. The terrestrial data provide support,
albeit indirect, for the view that LGM sea-surface tem-
peratures must have been lower than indicated by
CLIMAP. At the same time, they set limits to the

plausible magnitude of the average tropical cooling.
Climate change between LGM and today is shown to
be characterized by large-scale spatial patterns, which
plausibly originated in changes to the oceanic and
atmospheric circulation. A variety of physical pro-
cesses, some already captured in atmospheric models,
can potentially account for the (still robust) "nding that
tropical lapse rates at the LGM were steeper than
present, while the strength of this phenomenon itself is
shown to vary greatly in space. Although much remains
to be done to complete the picture of the ice age Earth,
the available data provide a rich source of qualitative
and quantitative information that can constructively
challenge our ability to predict the response modes of
the climate system.

Appendix

A simple phenomenological model underlies the use of lapse rates
in reconstructing temperature changes from elevational shifts in
vegetation zones:

¹(z)"¹(0)!sz (1)

¹*(z)"¹*(0)!s*z (2)

where ¹(z) is the modern temperature at elevation z above modern
sea level, s is a modern terrestrial lapse rate, and ¹*(z) and s* denote
the corresponding palaeotemperature and lapse rate. From Eqs. (1)
and (2),

*¹(z)"*¹(0)!ez (3)

where *¹(z)"¹*(z)!¹(z) is the temperature anomaly at elevation
z, *¹(0)"¹*(0)!¹(0) is the temperature anomaly at modern sea
level, and e"s*!s is the change in lapse rate.

Palaeoecological data indicate the past vegetation near the elev-
ation of the sampling site. We denote this elevation by h*, represent-
ing the elevation where this type of vegetation was found in the past.
Knowing the elevation h at which similar vegetation is found today,
we use Eqs. (1) and (2) to equate the temperatures ¹(h) and ¹*(h*):

¹(0)!sh"¹*(0)!s*h* (4)

hence using relations (3) and (4),

s (h*!h)"*¹(0)!eh* (5)

By comparing Eqs. (3) and (5) we see that the standard estimator
s(h*!h) (where s is the modern lapse rate) is equivalent to the
change in temperature at h*, the elevation of the site. From Eq. (5),
regression of this estimator against the site elevations will yield an
intercept that estimates the temperature change at modern sea level,
and a slope that estimates the change in lapse rate.
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