
Development of probability density functions for future
South American rainfall

Tim E. Jupp1, Peter M. Cox1, Anja Rammig2, Kirsten Thonicke2, Wolfgang Lucht2 and Wolfgang Cramer2

1Mathematics Research Institute, University of Exeter, Exeter, Devon EX4 4QF, UK; 2Potsdam Institute for Climate Impacts Research, D-14412

Potsdam, Germany

Author for correspondence:
Tim E. Jupp

Tel: +44 01392 263642

Email: t.e.jupp@exeter.ac.uk

Received: 18 March 2010

Accepted: 29 May 2010

New Phytologist (2010) 187: 682–693
doi: 10.1111/j.1469-8137.2010.03368.x

Key words: Amazonia, Bayesian statistics,
climate change, forest dieback, probability,
vegetation modelling.

Summary

• We estimate probability density functions (PDFs) for future rainfall in five regions

of South America, by weighting the predictions of the 24 Coupled Model

Intercomparison Archive Project 3 (CMIP3) General Circulation Models (GCMs).

The models are rated according to their relative abilities to reproduce the inter-

annual variability in seasonal rainfall.

• The relative weighting of the climate models is updated sequentially according

to Bayes’ theorem, based on the biases in the mean of the predicted time-series

and the distributional fit of the bias-corrected time-series.

• Depending on the season and the region, we find very different rankings of the

GCMs, with no single model doing well in all cases. However, in some regions and

seasons, differential weighting of the models leads to significant shifts in the

derived rainfall PDFs.

• Using a combination of the relative model weightings for each season we have

also derived a set of overall model weightings for each region that can be used to

produce PDFs of forest biomass from the simulations of the Lund–Potsdam–Jena

Dynamic Global Vegetation Model for managed land (LPJmL).

Introduction

The Amazonian rainforest plays a crucial role in the climate
system. It helps to drive atmospheric circulations in the
tropics by absorbing energy and by recycling about half of
the rainfall that falls upon it. Furthermore, the region is esti-
mated to contain c. 10% of the carbon stored in land eco-
systems and to account for 10% of global net primary
productivity (Melillo et al., 1993). Despite large-scale
anthropogenic deforestation, it seems likely that the region
is currently acting as a net sink for anthropogenic CO2

emissions (Tian et al., 2000; Phillips et al., 2009). The
resilience of the forest to the combined pressures of defores-
tation and climate change is therefore of great concern,
especially because at least one major climate model predicts
a severe drying of Amazonia in the 21st century (Cox et al.,
2000, 2004).

Rainfall in Amazonia is sensitive to seasonal, interannual
and decadal variations in sea-surface temperatures (SSTs)
(Fu et al., 2001; Liebmann & Marengo, 2001; Marengo,
2004). The warming of the tropical East Pacific during El
Niño events suppresses wet-season rainfall through

modification of the (East–West) Walker Circulation and
via the Northern hemisphere extra-tropics (Nobre &
Shukla, 1996). El Niño-like climate change (Meehl &
Washington, 1996) has similarly been shown to influence
annual mean rainfall over South America in General
Circulation Model (GCM) climate change projections
(Cox et al., 2004; Li et al., 2006). Variations in Amazonian
precipitation are also known to be linked to SSTs in the
tropical Atlantic (Liebmann & Marengo, 2001). A warming
of the tropical north Atlantic relative to the south leads to a
north-westward shift in the Intertropical Convergence Zone
(ITCZ) and compensating atmospheric descent over
Amazonia (Fu et al., 2001). For northeast Brazil the rela-
tionship between the north–south Atlantic SST gradient
and rainfall is sufficiently strong to form the basis for a sea-
sonal forecasting system (Folland et al., 2001). The varia-
tions in SSTs in the tropical Atlantic and Pacific contribute
in different ways to rainfall variability in the regions of
Amazonia.

Despite this developing understanding of the dynamics
of tropical climate variability and change, the current
generation of GCMs give very different projections of
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future Amazon rainfall (Li et al., 2006), varying from
significant increases in rainfall to potentially damaging dry-
ing (Cox et al., 2004). Fig. 1 compares the simulated 20th
century rainfall with the trend predicted for the 21st cen-
tury for each of the 24 climate models available in the
archive of the Coupled Model Intercomparison Archive
Project (CIMP3) and for the five regions of South America
defined in Table 1. There is no clear consensus on rainfall
change in any of the regions, with predicted trends in 21st
century rainfall ranging from an increase of c.
+1 mm d)1 century)1 (e.g. model o in Eastern Amazonia
and Northeast Brazil) to a drying of )2 mm d)1 century)1

(e.g. model w in Eastern Amazonia). More importantly,
there is no obvious relationship between the ability of a
given model to simulate the annual mean 20th century rain-
fall and the sign of its predicted trend in the future. For
example, models with a relatively realistic simulation of
annual mean rainfall in Southern Amazonia (Fig. 1d)
include the models with the largest increases and decreases
in the 21st century (models r and w, respectively).

How can we help to inform decision-making given this
uncertainty? One way is to weight the various model projec-
tions based on the ability of each model to produce key
aspects of the observed climate. In this way we might hope to
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Fig. 1 Annual means (20th century) and linear trends (21st century) in each of the climate models listed in Table 2. The vertical line shows
observed annual mean rainfall in the 20th century. The horizontal line separates models with a positive trend from models with a negative
trend.
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find more robust predictions by emphasizing the results
from more realistic models and de-emphasizing the results
produced by less realistic models. The method that we
describe here is to construct a probabilistic prediction based
on a weighted sum of the predictions of individual GCMs,
using a Bayesian approach (Min et al., 2007; Tebaldi &
Knutti, 2007; Tebaldi & Sansó, 2009). The weight assigned
to each GCM will be referred to as the probability of the
model and will generate a probability density function
(PDF) over the set of models. Bayes’ theorem allows the
model probabilities to be modified each time we consider
the ability of the models to simulate some relevant aspect of
current climate (such as seasonal rainfall) by comparing time
series of past observations with time series of model simula-
tions. In this study we weight models based on their ability
to simulate both the mean state and the inter annual variabi-
lity (i.e. the statistical distribution) of the current climate. In
other words, the aim is to downweight those models whose
mean value is far from the observed mean, or whose inter-
annual variability is a poor fit to the observed distribution,
even when any bias in the mean value has been corrected.

The procedure can be summarized as follows.
• Assign equal probability to all models – a uniform prior

PDF.
• Choose a climatic variable of interest (in this case,

precipitation).
• Update the model PDF based on the fit between model

simulations and observations for this variable.
• Use this posterior PDF to weight the predictions from

individual models.
We make use of this procedure to estimate PDFs for

future rainfall in each of the five regions of South America
(Table 1; Fig. 2), using rainfall simulations produced by
the 24 CMIP3 GCMs (Table 2). In the ‘Description’
section we outline the theory and data on which our
approach is based, and in the Section ‘Results’ we discuss
the PDFs for future rainfall that this procedure yields.

Description

Assigning Bayesian probabilities to climate model
projections

In this section, we describe formally the procedure adopted.
We consider the case in which there are N ¼ 24 climate

models (Table 2), denoted alphabetically by the labels
m1 ¼ a to mN ¼ x. For each of the five regions listed in
Table 1, the aim is to assign a probability to the ith model
based on its ability to simulate the seasonal precipitation
observed in the 20th century. In the absence of any other
information about the performance of the models it is natu-
ral to assign equal weight to each of them. In the language
of Bayesian statistics, we therefore assign a uniform prior
distribution to the models:

EANWA

NEB

SAz

SB

Fig. 2 The regions defined in Table 1. EA, Eastern Amazonia; NEB,
Northeast Brazil; NWA, Northwest Amazonia; SAz, Southern
Amazonia; SB, Southern Brazil.

Table 1 Definitions of the regions referred to in this study

Region Identifier Longitude Latitude

Eastern Amazonia EA 55�W to 45�W 5�S to 2.5�N
Northwest Amazonia NWA 72.5�W to 60�W 5�S to 5�N
Northeast Brazil NEB 45�W to 35�W 15�S to 2.5�S
Southern Amazonia SAz 65�W to 50�W 17.5�S to 10�S
Southern Brazil SB 60�W to 45�W 35�S to 22.5�S

Table 2 Labelling of the climate models referred to in this study

Model
identifier Model name

Model
identifier Model name

a bccr_bcm2_0 m ingv_echam4
b cccma_cgcm3_1 n inmcm3_0
c cccma_cgcm3_1_t63 o ipsl_cm4
d cnrm_cm3 p miroc3_2_hires
e csiro_mk3_0 q miroc3_2_medres
f csiro_mk3_5 r miub_echo_g
g gfdl_cm2_0 s mpi_echam5
h gfdl_cm2_1 t mri_cgcm2_3_2a
i giss_aom u ncar_ccsm3_0
j giss_model_e_h v ncar_pcm1
k giss_model_e_r w ukmo_hadcm3
l iap_fgoals1_0_g x ukmo_hadgem1

The models are those in the World Climate Research Programme’s
Coupled Model Intercomparison Project phase 3 (CMIP3)
multimodel data set in the ‘Climate of the 20th Century’ experiment
(https://esg.llnl.gov:8443).
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pðmiÞ ¼
1

N
; 8i 2 f1; 2; . . . ;N g: Eqn 1

In other words, the prior probability of the ith model is
set to be 1/N. A naı̈ve multimodel prediction would simply
combine the predictions from individual models according
to this uniform prior. The salient feature of our method is
that predictions for the 21st century will be created by
assigning different weights to different model predictions
according to the models’ performance in the 20th century.

Having assigned a prior PDF, the next step is to assess the
performance of each model over the historical period. This
is accomplished by comparing time series from observations
with model simulations over the historical period. For
example, Fig. 3(a) compares observations of 20th century

annual mean rainfall in Eastern Amazonia (solid line) with
annual mean rainfall simulated by the 24 climate models
(grey) listed in Table 2. Data are presented in the form of
time-averages taken over the calendar year January to
December (‘ann’). It follows that our measure of statistical
variability is the interannual variability in annual mean rain-
fall.

Several important points are illustrated in Fig. 3(a). No
climate model is able to simulate exactly the observed year-
to-year variability in rainfall. In other words, the peaks and
troughs of the solid line (observations) do not coincide with
the peaks and troughs of any of the grey lines (the raw simu-
lations from the 24 models). This is a function of the
chaotic nature of the climate system and is both unavoid-
able and entirely expected. The best we can demand from a
climate model is that it should simulate well the observed
statistical distribution of any climate variable over a period
of a few decades (or, in this example, the 20th century).

It is clear from Fig. 3(a) that none of the models captures
the observed distribution well. Consider first of all the
century mean of all of the time series. It is apparent that
most of the century means of the simulations Æri,tæ are lower
than the century mean of the observations Æotæ ¼
6.05 mm d)1. (We use angle brackets to denote a temporal
average over the 20th century.) This is an illustration of bias
in the models. To remove this bias, it is standard practice to
perform some sort of bias correction to the model simula-
tions so that the long-term mean value of the simulated
climate variable agrees with observations. The precise way
in which model simulations are corrected for bias will be
discussed further in the Section ‘Example: annual mean
rainfall in Eastern Amazonia’. In the Section ‘A measure for
bias: the climate prediction index C ’, we will discuss the
way in which models with greater bias will be assigned a
lower weighting in the model PDF.

Fig. 3(a) illustrates that the century means of the bias-
corrected simulations {Æbi,tæ} are all – as expected – closer
than the raw simulations to the century mean of the obser-
vations Æotæ ¼ 6.05 mm d)1. It is still possible, however, to
discriminate amongst the (bias-corrected) models by assess-
ing how well the distributions of the bias-corrected simula-
tions fit the distribution of the observations. This point is
illustrated in Fig. 3(b). Here, the empirical cumulative dis-
tribution functions (CDFs) of the raw simulations {ri,t}
(grey), bias-corrected simulations {bi,t} (dashed) and obser-
vations {ot} (solid) are compared. It is clear that the bias-
corrected simulations (dashed) have CDFs that are ‘closer’
to the observations (black) than to the raw simulations
(grey). We will show in the Section ‘A measure for distri-
butional fit: the Kolmogorov–Smirnov statistic D’, how
models whose CDFs are ‘closest’ to the observations will
receive the highest weighting in our model PDF.

In particular we wish to assign greater weight to those
models that simulate well the observed interannual
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Fig. 3 Time series and associated cumulative distribution functions
(CDFs) for the Eastern Amazonia region (Fig. 2). Solid lines represent
observations {ot} from the data set of the Climatic Research Unit
(CRU) at the University of East Anglia; grey lines represent (raw) cli-
mate model simulations {ri,t} from each of the climate models listed
in Table 2; and dashed lines represent bias-corrected climate model
simulations {bi,t} (Eqn 3) from each of the climate models. (a) Time
series data. (b) Empirical CDFs corresponding to the time series
shown in (a).
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variability in seasonal rainfall. For each spatial region and
for each season, the model PDF is updated in a two-stage
process. First, the climate prediction index C, described in
the Section ‘A measure for bias: the climate prediction index
C’, is used to assess the degree to which the mean of the raw
simulations of the ith model Æ{ri,t}æ fits the mean of the obser-
vations Æotæ. Second, the Kolmogorov–Smirnov statistic D,
described in the Section ‘A measure for distributional fit: the
Kolmogorov–Smirnov statistic D’, is used to assess the simi-
larity of the distribution of bias-corrected simulations of the
ith model, {bi,t} to the distribution of the observations {ot}.

In general terms, the sequential modification of the
model PDF proceeds by considering the likelihood f(d|mi)
of observed data d under the assumption that model mi is
correct. The posterior PDF is calculated from the prior
PDF using Bayes’ formula:

pðmiÞ / f ðd jmiÞpðmiÞ; Eqn 2

with an appropriate normalization being applied so thatPN
i = 1 pðmiÞ = 1.
In the next two sections we outline plausible forms for

the likelihood function f (d |mi) to assess the bias of the raw
simulations {ri,t} and the distributional fit to the data of the
bias-corrected simulations {bi,t}.

As rainfall must be non-negative we apply a logarithmic
transformation to obtain the bias-corrected rainfall simula-
tions. Specifically, the bias-corrected rainfall simulations are
constructed according to the following formula:

log bi;t ¼ log ri;t � hlog ri;t i þ hlog ot i; Eqn 3

where the angle brackets denote a temporal mean over the
20th century.

A measure for bias: the climate prediction index C

In this section we consider how to weight the climate mod-
els according to the mean bias in the raw simulations {ri,t}.
For this we compare the century mean of the observations
Æotæ with the century mean of the ith (raw) model simula-
tion Æri,tæ. We construct the sample variance, r2, of the cen-
tury mean amongst the different models:

r2 ¼ 1

N � 1

XN
n¼1

hri;t i �
1

N

XN
n¼1

hri;t i
 !2

: Eqn 4

Following Murphy et al. (2004), we then construct a
climate-prediction index:

Ci ¼ hri;t i � hot i
� �2

; Eqn 5

as a measure of the bias of the ith model. The correspond-
ing likelihood of the data, d (which in this case is the

climate prediction index Ci), is then assumed (Murphy
et al., 2004) to take the functional form:

f ðd jmiÞ ¼ exp � Ci

2r2

� �
: Eqn 6

A measure for distributional fit: the
Kolmogorov–Smirnov statistic D

Here we consider how to rate the climate models according
to the shape of the distribution of the bias-corrected simula-
tions {bi,t}. In order to compare the distributions of the
bias-corrected simulations {bi,t} and the observations {ot} we
consider empirical CDFs, as shown in Fig. 4(a). The CDF
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Fig. 4 The Kolmogorov–Smirnov statistic as a measure of the differ-
ence between two cumulative distribution functions (CDFs). (a) The
Kolmogorov–Smirnov statistic D is defined as the maximum differ-
ence between two CDFs, where the CDFs are derived from samples
of size n0 and ni. The two CDFs shown here are for illustrative
purposes only and do not correspond to the data discussed in the
text. (b) The probability density function (PDF) of D in the case
when n0 ¼ ni ¼ 99 and the two samples are drawn from identical
distributions. K-S, Kolmogorov–Smirnov.
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F(x) of a variable x is simply the proportion of the data
whose value is less than or equal to x. Suppose that the
observations consist of a time series of length n0, while the
bias-corrected simulation from the ith model consists of a
time series of length ni. (In the example that we present in the
Section ‘Example: annual mean rainfall in Eastern
Amazonia’, the data cover the years 1901 to 1999 and so
n0 ¼ ni ¼ 99.) We construct empirical CDFs F0(x) and
Fi(x) for the two time series and compare them. Clearly, a
good model is one whose CDF Fi(x) is reasonably ‘close’ to
the CDF of the observations F0(x). A standard measure of the
closeness of two distributions, whose distribution is easily cal-
culated, is the Kolmogorov–Smirnov statistic, D, defined by:

Di ¼ max jF0ðxÞ � FiðxÞj: Eqn 7

Thus, for each model mi we can regard Di as a measure of
the difference between the CDF of the (bias-corrected) simu-
lations of the ith model and the CDF of the observations.
The distribution fKS(Di;n0,ni) of the Kolmogorov–Smirnov
statistic D can be calculated under the null hypothesis that the
observations and the simulation are drawn from the same
distribution. This distribution is known as the Kolmogorov
distribution and it is easily calculated using standard statistical
software packages (given knowledge of the two sample sizes
n0 and ni) as a function of Di. The PDF of the Kolmogorov
distribution with n0 ¼ ni ¼ 99 is shown in Fig. 4(b).

It follows that the likelihood of the data d (which in this
case is the Kolmogorov–Smirnov statistic Di), under model
mi, is:

f ðd jmiÞ ¼ fKS Di ; n0; nið Þ: Eqn 8

Data

Two types of data are used in this study – observational data
for the 20th century alone and model-based data for the
20th and 21st centuries. The data taken to represent the
‘true’ state of the climate are taken from the Climatic
Research Unit (CRU) TS 3.0 archive (New et al., 1999,
2000). These data are available at http://www.cru.uea.
ac.uk/cru/data/. General Circulation Model data are taken
from the CMIP3 multimodel archive (Covey et al., 2003),
in the Climate of the 20th Century experiment. There are
24 models, which are listed in Table 2. These data are
available at https://esg.llnl.gov:8443/.

For assessment of the 20th century climate, raw data con-
sist of monthly averages for the period January 1901 to
December 1999 (this is the longest period for which data
are available from all sources). Similarly, model predictions
for the 21st century are considered at a monthly resolution
for the period January 2001 to December 2098. For the
analysis, five types of seasonal average were created by aver-
aging over the periods January–December (denoted by

‘ann’), December–February (‘DJF’), March–May (‘MAM’),
June–August (‘JJA’) and September–November (‘SON’).
The final time series used in the analysis was then obtained
by taking spatial averages of these seasonal data in a total of
five spatial windows (Table 1).

Validation

It is important to assess whether or not the posterior weight-
ing of the GCMs can be said to produce ‘better’ predictions
of a climate variable, x, than simple uniform prior weight-
ing via Eqn 1. To test this, we split the data from the 20th
century into a training period covering the years 1901–
1959 and a validation period covering the years 1960–
1999. For a climate variable, x, model weights (both the
uniform prior weights and the posterior weights obtained
by considering the observations in the training period) can
be used to produce a predicted CDF F(x) for the validation
period. The difference between the predicted CDF F(x) and
the observed CDF F0(x) in the validation period is then
quantified using the root mean square error E:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

x2 � x1

Z x2

x1

F ðxÞ � F0ðxÞð Þ2dx

s
: Eqn 9

Clearly, it is desirable for the values of E for posterior-
weighted predictions to be less than those for prior-
weighted predictions.

Results

In this section we present detailed results for one illustrative
region and season (see the section entitled ‘Example: annual
mean rainfall in Eastern Amazonia’) before summarizing
our results for the remaining cases (see the section entitled
‘Results for other regions and seasons’). All calculations
reported here were performed using the statistical package
R. We chose this software because it is both powerful and
freely available for download (available at http://cran.
r-project.org/). The results reported here were produced
using an R-code that we wrote specifically for the purpose
of Bayesian reweighting of climate model predictions.

Example: annual mean rainfall in Eastern Amazonia

We report the steps below sequentially but stress that the
same final result would be obtained if the data constraints
were considered in a different order (The insensitivity to
ordering comes from the fact that at each stage the PDF is
modified by a multiplication, and, of course, a multistage
multiplication can be performed in any order.)

By definition, our initial model PDF for the N ¼ 24
models is the uniform prior (Eqn 1). We will now modify
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Fig. 5 Steps in the calculation of a probability density function (PDF) across the N ¼ 24 models, shown here for the illustrative case of annual
mean rainfall in Eastern Amazonia (Fig. 3). Initially, a uniform prior (Eqn 1) is assigned across the models. (a) The likelihood of each model,
calculated from Eqn 6, is a measure of each model’s ability to reproduce the mean of the observed time series. (b) Updated model PDF,
incorporating the likelihood information in (a). Dashed horizontal line indicates prior probability 1/N initially assigned to each model. (c) The
model PDF shown in (b), with models sorted into ascending order of probability. (d) The likelihood of each model, calculated from Eqn 8, is a
measure of each model’s ability (after bias-correction) to reproduce the distributional shape of the observed time series. (e) Updated model
PDF, incorporating the likelihood information in (d). (f) The model PDF shown in (e), with models sorted into ascending order of probability.
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this PDF according to the models’ ability to simulate annual
mean rainfall in Eastern Amazonia over the 20th century.

Bias in the raw simulations Raw simulations of annual
mean rainfall {ri,t} in Eastern Amazonia are shown in grey
in Fig. 3(a). The century mean rainfall simulated by the ith

model Æri,tæ is compared with the century mean of the obser-
vations Æotæ ¼ 6.05 mm d)1 via Eqns 4 and 5. Eqn 6 then
yields the likelihood of the data under each of the models.
This likelihood is shown for each model in Fig. 5(a). The
likelihood is then combined with the (uniform) prior via
Eqn 2 to yield the model PDF shown in Fig. 5(b). The
dashed horizontal line in this and in subsequent figures for
model PDFs denotes the uniform PDF for reference.

Distributional shape of the bias-corrected simulations
The next stage of the process is to modify the current model
PDF (in Fig. 5b) according to the (bias-corrected) models’
ability to simulate the distribution of annual mean rainfall
when bias corrected by Eqn 3. The distribution of the
bias-corrected simulations (Fig. 3b, dashed lines) is then
compared with the distribution of the observations
(Fig. 3b, black lines) using the Kolmogorov–Smirnov
statistic (Eqn 7). Finally, Eqn 8 yields the likelihood of the
data under each of the models, as shown in Fig. 5(d). This
likelihood is combined with a prior weight taken from the
previous calculation (i.e. the model PDF in Fig. 5b) via
Bayes’ theorem (Eqn 2) to yield the updated model PDF
shown in Fig. 5(e,f). It is clear that the simulated interannu-
al variability discriminates much more clearly between
different models than the simulated mean rainfall, such that
the final model PDF is dominated by this stage of the
procedure.

PDF for future rainfall We are now in a position to calcu-
late a probability distribution for future rainfall by weight-
ing the predictions of individual models. It is important
that some models predict a downward trend in rainfall
while others predict little trend, or indeed an upward trend,
(Li et al., 2006). Our final estimate of the trend in 21st cen-
tury rainfall will, of course, depend on how the model PDF
(Fig. 5e,f) distributes probability weight between models
with upward and downward trends.

Fig. 6(a) shows model predictions of annual mean rain-
fall in the early part of the 21st century (2001–2031). The
predictions from individual climate models are shown as
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Fig. 6 Predictions of 21st century annual mean rainfall in Eastern
Amazonia (Li et al., 2006). (a) Cumulative distribution functions
(CDFs) of predicted rainfall in the period 2001–2031. The grey lines
represent the predictions of each of the N ¼ 24 models. The solid
black line represents combined prediction, obtained by weighting
each model with the model probabilities in Fig. 5(e). (b) CDFs of
predicted rainfall in the period 2068–2098. The gray lines represent
the predictions of each of the N ¼ 24 models. The dashed black line
represents combined prediction, obtained by weighting each model
with the model probabilities in Fig. 5(e). (c) Comparison of the
weighted predictions for the early and late 21st century (probability
density functions (PDFs) corresponding to these CDFs are shown in
Fig. 7a). The solid line represents predicted distribution the early
21st century. The dashed line represents predicted distribution in the
late 21st century.
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grey lines. These curves are CDFs of the (bias-corrected)
rainfall predicted by each of the N ¼ 24 CMIP3 climate
models. These individual predictions have then been com-
bined using the model PDF of Fig. 5(e,f) to give an overall

distribution for rainfall that is a weighted average across
models. This distribution is shown in black and represents
our final probabilistic prediction based on the criteria that
we outlined earlier.
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Fig. 7 Changes in modelled rainfall probability density functions (PDFs) between the early 21st century (2001–2031) and the late 21st
(2068–2098) for the regions listed in Table 1. The grey line represents observed distribution in the 20th century. The solid line represents pre-
dicted distribution in the early 21st century. The dashed line represents predicted distribution in the late 21st century. General Circulation
Model (GCM) predictions were weighted according to the appropriate posterior distribution in Table 3. EA, Eastern Amazonia; NEB, Northeast
Brazil; NWA, Northwest Amazonia; SAz, Southern Amazonia; SB, Southern Brazil.
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We now consider how the predicted rainfall changes
from the beginning to the end of the 21st century. Fig. 6(b)
shows model predictions of climate in the last 30 yr of the
21st century. Again, the predictions of the individual
climate models are shown as grey lines and a weighted aver-
age, using the model PDF of Fig. 5(d,e), is shown in black.

Fig. 6(c) illustrates the change in model-weighted rainfall
predictions between the period 2001–2031 and the period
2068–2098. It is clear that the spread of the probabilistic
prediction increases over the 21st century. This is a conse-
quence of the prediction being an average across all models.
Over the 21st century, some of the models predict increased
rainfall, whereas others predict decreased rainfall (Li et al.,
2006). Thus, unless all models of one ‘sign’ are very signifi-
cantly downweighted in the model PDF, the weighted aver-
age rainfall prediction must assign some probability to
increased rainfall and some probability to decreased rainfall.
We can essentially discount the possibility of ‘very high’ or
‘very low’ rainfall in the early 21st century (Fig. 6a) because
there are no models that predict these extreme values. For
the late 21st century, however, we cannot rule out ‘very
high’ or ‘very low’ rainfall (Fig. 6b) because: some models
predict high rainfall and some models predict low rainfall;
and the evidence does not lead to significant downweighting
of all ‘low’ models or all ‘high’ models.

Fig. 6(c) contains CDFs. For ease of interpretation these
functions may be differentiated to obtain PDFs for future
rainfall. The PDFs for all regions are shown in Fig. 7 and
show the change in predicted rainfall PDF between the per-
iod 2001–2031 and the period 2068–2098. In the case of
Eastern Amazonia (Fig. 7a), our results suggest that a ‘low’
annual mean rainfall of c. 3 mm d)1 is much more likely to
occur at the end, than at the beginning, of the 21st century.

Results for other regions and seasons

We compared observed and simulated annual mean rainfall
in the 20th century for the five study regions. In general,
there are systematic errors in rainfall, with climate models
tending to overestimate rainfall in Northeast Brazil but to
underestimate rainfall in the other four regions.

Fig. 8 contains the results of the validation procedure
described in the Section entitled ‘Validation’. The poster-
ior-weighted predictions perform better than the prior-
weighted predictions in most cases and perform only
slightly worse in the remainder.

We repeat the Bayesian weighting procedure for each of
the five regions in Table 1. In each case we make use of
both the bias in the mean rainfall (via the index C), and the
Kolmogorov–Smirnov statistic of the bias-corrected rainfall
(via the index D), to downweight the models. Table 3
shows the relative model weightings derived for each region
that result from considering annual mean rainfall. These
overall weightings were subsequently used to produce PDFs

of biomass change from the forest projections produced
using the Lund–Potsdam–Jena (LPJ) model (Rammig
et al., 2010).
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Fig. 8 Comparison of root mean square error (RMSE) E in rainfall
cumulative distribution function (CDF) for prior- and posterior-
weighted predictions. Training period 1901–1959; validation period
1960–1999 (Eqn 9 with x1 ¼ 0 and x2 ¼ 25 mm d)1). One data
point is given for each season and each region. The dashed line has a
slope of 1.

Table 3 Posterior probabilities (expressed as percentages) assigned
to models of Table 2 in the regions listed in Table 1

Model EA NEB NWA SAz SB

a 0.87 0.07 1.77 2.49 0.04
b 9.91 0.39 5.60 7.68 0.09
c 9.94 0.71 5.61 7.53 0.00
d 4.15 0.07 5.14 7.58 0.12
e 1.44 0.95 0.17 3.87 0.20
f 0.00 1.00 0.00 0.00 1.20
g 0.19 3.33 0.00 0.07 1.28
h 0.16 21.56 0.00 0.00 21.17
i 1.35 0.00 3.77 2.11 0.17
j 2.67 0.05 5.55 2.04 0.73
k 1.92 0.00 1.88 0.65 6.13
l 2.71 2.36 3.80 7.50 8.06
m 3.66 0.34 4.23 7.60 1.34
n 4.03 2.16 3.85 0.88 2.33
o 0.90 7.42 0.96 0.11 16.82
p 13.63 2.78 14.08 3.42 0.08
q 13.61 4.45 1.75 1.27 1.07
r 9.93 0.47 10.24 2.02 0.52
s 0.12 14.07 14.10 10.64 21.10
t 5.44 17.08 3.33 7.54 13.90
u 9.90 0.00 2.73 10.25 0.47
v 0.03 0.06 5.05 10.44 1.61
w 1.77 8.11 2.68 2.85 1.47
x 1.67 12.58 3.72 1.45 0.09

EA, Eastern Amazonia; NEB, Northeast Brazil; NWA, Northwest
Amazonia; SAz, Southern Amazonia; SB, Southern Brazil.
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Discussion

It is clear that the relative ranking of GCMs varies signifi-
cantly with region and season. In any one region it is also
unusual for a given model to simulate rainfall accurately in
all four seasons. As a result, models that simulate each
season well tend to dominate the overall weighting (e.g.
models p and q in Eastern Amazonia, model h in Northeast
Brazil, models p and s in Northwest Amazonia, and models
h and s in Southern Brazil).

As an indication of the risk of drought, the probability of
annual rainfall being < 3 mm d)1 was also calculated for
each of the five regions. The results are summarized in
Table 4 and indicate an estimated six-fold increase by the
end of the 21st century in the likelihood of drought-like
conditions for Southern Brazil, and smaller increases for
Eastern and Southern Amazonia.

To summarize, we have estimated PDFs for future rain-
fall in five regions of South America, by weighting the
predictions of the 24 CMIP3 GCMs according to their rela-
tive abilities to reproduce the mean and variability of the
observed rainfall in each season. The relative weighting of
the climate models was updated sequentially according to
Bayes’ theorem, based on the biases in the mean rainfall and
the distributional fit of the bias-corrected time series as mea-
sured using the Kolmogorov–Smirnov statistic, D. Using a
combination of the relative model weightings for each sea-
son, we also derived a set of overall model weightings for
use by the LPJ group (Rammig et al., 2010).

Depending on the season and region, we find very differ-
ent rankings of the GCMs, with no single model doing well
in all cases. However, in some regions, posterior weighting
of the models leads to significant shifts in the derived rain-
fall PDFs between the beginning and the end of the 21st
century, including a significant increase in the risk of annual

mean rainfall below 3 mm d)1 in Southern Brazil.
Compared with a method in which models are simply
weighted equally, the Bayesian approach adopted here pro-
vides an estimate of future rainfall in Amazonia that makes
greater use of the information available in the historical
record. There are still, however, very significant uncertain-
ties associated with deficiencies in GCM rainfall simulation
in this region. In the future, the Bayesian methodology
described here could be adapted to incorporate statistical
descriptions of the uncertainty present in the historical
record and a multivariate assessment of model performance.
It could also be used to assess GCMs based on their ability
to reproduce other variables known to be climatically signif-
icant, such as regional SSTs.
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