Eric Meineri

Maître de Conférences

Institut Méditerranéen de Biodiversité et d’Écologie Marine et Continentale (IMBE)
IMBE UMR CNRS 7263, IRD 237
Aix Marseille Université Campus Sciences St Jérome
Avenue Escadrille Normandie Niémen
13397 Marseille cedex 20
Mail: eric.meineri@imbe.fr

Contact

Bio

I am working with plant population responses to global changes and ecological models. The main research questions my research address are:
 How can we account for local scale processes in species distribution models ?
 How can landscape heterogeneity buffers negative effects of global warming on plant populations and biodiversity?
 How does climate change affect the demographic dynamic of plants?
 What is the relative importance of biotic processes to understand species responses to climate change?
To answer these questions, I look at geographical distributions of plants but also zoom in more key processes for plant population such as early life history stages. My research covers the fields of macroecology, global change ecology and population biology.

Keywords: Microrefugia, microclimate, species distribution, seedling recruitment, biotic interactions, climate change

CV

Employments

  • Since 2017: Assistant Professor of Biostatistics at Aix-Marseille Université
  • 2016-2017: Self employed as consultant in plant ecology and biostatistics, France
  • 2013-2016: Postdoc, University of Stockholm, Stockholm, Sweden
  • 2012-2013: Postdoc, La Tour du Valat, Arles, France

Education

  • 2012: PhD in plant ecology, University of Bergen, Norway
  • 2007: Master in Physical Geography, Université Blaise Pascal, Clermont-Ferrand, France

Thématiques de recherche

Climate change and microrefugia
Microrefugia are local patches where species persist when the regional climate becomes unsuitable. I am particularly interested in the understanding of microrefugia and in improving our ability to account for microrefugia in species distribution modelling. I have been participating in -and conducting a series of studies within this topic. We have been working on modelling the direct and indirect associations between landscape heterogeneity (mainly topography), local climate and species distribution at fine scale. Using this work, we have identified the most important topographic drivers of local climate and developed large domain climatic grids that improves our ability to account for microrefugia in species distribution modelling. I also participated in research demonstrating large impact of forest management, forest composition and forest structure on miroclimate and thereby on species fine scale distribution (see work of C.Greiser). Since recently, I focused my research on the Mediterranean region where we aim to better understand how populations situated at the extreme southern border of their species ranges use landscape heterogeneity to persist in regions with unsuitable climate (see work og M.Finocchiaro). My research within the topic of microrefugia will continue further, questioning the aspects of competition and of local adaptations within microrefugia.

Climate change effects on seedling recruitment
seedling recruitment is critical for plant species response to climate change because it allows for genetic recombination and production of dispersal units. My work tries to improve our understanding on how climate and biotic interactions drive the different substages of seedling recruitment and how predicted changes in temperature and precipitation are likely to affect recruitment success. This research suggests, that in cold and wet region, most impacts of climatic changes on seedling recruitment would be mediated through an increase of competition, likely due to increase frequencies of more competitive generalist species.

Other topics I have been working on and would like to develop further

  • Using species distributions models to improve ecological compensation
  • Modelling the spread of invasive species
  • Accounting for biotic interactions into species distribution models

Project participations

  • 2020-2023: MICROMED - Conservation de la flore face au réchauffement climatique : caractériser, cartographier et évaluer le rôle des microrefuges en région Sud-PACA, PI: Eric Meineri, funded by the région Sud-PACA
  • 2014-2020: Adaptation to climate change for both northern and southern species, PI: K.Hylander (Stockholm University)
  • 2008-2014: SEEDCLIM: The role of seeds in a changing climate - linking germination ecophysiology to population and community ecology, PI: Vigdis Vandik (University of Bergen)
  • 2013-2015: EKOKLIM, large transdisciplinary research program at Stockholm University
  • 2012-2013: ECREVISSE, Potential impact of red swamp crayfish in Camague, PI: Francois Mesleard

Enseignement

J’interviens principalement dans les enseignements en statistiques de la licence et du master biodiversité, écologie et évolution de l’Université Aix-Marseille.

Supervision:
- Doctorat:

  • Finocchiaro. M (2020 – , co-encadrant): MICROMED: Conservation de la flore face au réchauffement climatique : caractériser, cartographier et évaluer le rôle des microrefuges en région Sud PACA
  • Greiser. C (2015 – 2020 , co-encadrant): Microrefuges et aires de tremplin - adaptation au changement climatique pour les plantes septentrionales et méridionales

- Master:

  • Rochwerger. N (M1, 2021) Etude des effets de la végétation arborée sur le microclimat en région méditerranéenne
  • Garnier. N et Gorgianengo. E (M1, 2020) L’accentuation de la sècheresse induite par le changement climatique impacte négativement le recrutement par graines en région méditerranéenne
  • Finocchiaro. M (M2, 2019): Modélisation des microrefuges de flore en région méditerranéenne
  • Pecquet.J (M2, 2018, co-supervision): Potentialités écologiques du ruisseau urbain des Aygalades
  • Fetiveau .C (M2, 2018, co-supervision): Effets de la température sur les communautés zoo- et phyto-planctoniques des lacs de hautes altitudes
  • Falzon. N (M2, co-supervision) (2018): Calibration des valeurs indicatrices Ellenberg, Landolt et Julve pour la flore méditerranéenne
  • A.Gallois (M1, 2018): Modélisation de la répartition de la consoude bulbeuse (Symphytum bulbosum Schimp.) en vue de sa conservation
  • V.Journe (M1, 2015): Distribution des plantes vasculaires septentrionales et microrefuges dans les forêts boréales face aux changements climatiques
  • P. Wognum (M2, 2014): Effets des facteurs de forçage climatique sur les répartitions de plantes le long d’un gradient latitudinal
  • S. Le Mellec (M1, 2009): Effets de la microtopographie sur la germination par graine

Publications

Articles
Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D. and Meineri, E. 2023, Bridging the gap between microclimate and microrefugia : a bottom-up approach reveals strong climatic and biological offsets. Global Change Biology, Vol 9, pp 1024–1036., hal-03990360v1

Vandvik, V., Althuizen, I. H., Jaroszynska, F., Krüger, L. C., Lee, H., Goldberg, D. E., Klanderud, K,Olsen, , S.L., Telford, R.J., Östman, S.A.H., Busca, S., Dahle, I.J., Egelkraut, D.D., Geange, S.R., Gya, R., Lynn, J.S., Meineri, E., Young, S. & Halbritter, A. H. 2022. The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands. Scientific Data, Vol 9(1), pp 1-19., hal-04037535

Saatkamp, A., Falzon, N., Argagnon, O., Noble, N., Dutoit, T. & Meineri, E. 2022. Calibrating ecological indicator values and niche width for a Mediterranean flora. Plant Biosystem., pp 1-11., hal-03782767

Greiser, C., Ehrlén, J., Luoto, M., Meineri, E., Merinero, S., Willman, B. & Hylander, K. 2021, Warm range margin of boreal bryophytes and lichens not directly limited by temperatures., Journal of Ecology., Vol 109, pp 3724-3736. hal-03395455, version 1

Garnier, S., Giordanengo, E., Saatkamp, A., Santonja, M., Reiter, I.M., Orts J‐P., Gauquelin, T. & Meineri, E. 2021., Amplified drought induced by climate change reduces seedling emergence and increases seedling mortality for two Mediterranean perennial herbs. Ecology and Evolution., Vol 11., pp 16143-16152. hal-03439184

Klanderud, K., Meineri, E., Goldberg; D.E., Michel, P., Berge, A., Guittar, J. & Vandvik, V. 2021., Vital rates in early life history underlie shifts in biotic interactions along bioclimatic gradients: An experimental test of the Stress Gradient Hypothesis. Journal of Vegetation Science., Vol 32., pp e13006. hal-03215776

Dahlberg, C.J., Ehrlén, J., Christiansen, D.M., Meineri, E. & Hylander. K. 2020 Correlations between plant climate optima across different spatial scales. Environmental and Experimental Botany, vol 170., pp 103899. hal-02368304v1

Geslin, B., Gachet, S., Deschamps-Cottin, M., Flacher, F., Ignace, B., Knoploch, C., Meineri, E., Robles, C., Ropars, L., Schurr, L. & Le Féon, V. 2020. Bee hotels host a high abundance of exotic bees in an urban context. Acta Oecologica. vol 105., pp 103556. hal-03168815, version 1.

Guittar, J., Goldberg, D., Klanderud, K., Berge, A., Ramírez Boixaderas, M., Meineri, E., Töpper, J. & Vandvik, V. 2020, Quantifying the roles of seed dispersal, filtering, and climate on regional patterns of grassland biodiversity. Ecology, vol 101., pp e03061. hal-03008059

Greiser, C., Ehrlén, J., Meineri, E. & Hylander, K. 2020. Hiding from the climate: Characterizing microrefugia for boreal forest understory species. Global Change Biology, vol 26., pp 471-483. hal-02466915v1

Greiser, C., Hylander, K., Meineri, E., Luoto, M. & Ehrlén, J. 2020. Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, vol 43., pp 1-11. hal-02466907v1

Meineri, E, Klanderud, K., Guittar, J., Goldberg; D.E. & Vandvik, V., 2020., Functional traits, not productivity, predict openness to seedling recruitment in alpine plant communities under climatic warming. Oikos., vol 129., pp 13-23. hal-02306823v2

Töpper, J.P., Meineri. E., Olsen,S.O., Rydgren, K., Skarpaas, O. & Vandvik. V., 2018., The devil is in the detail: Nonadditive and context-dependent plant population responses to increasing temperature and precipitation. Global Change Biology., vol 24., pp 4657-4666. hal-01820204v1

Greiser, C., Meineri, E., Luoto, M., Ehrlén, J. & Hylander, K., 2018., Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology., vol 250–251., pp147-158. hal-01704395v1

Aalto, J., Riihimäki, HK., Meineri, E., Hylander, K. & Luoto, M. 2017., Revealing topoclimatic heterogeneity using meteorological station data. International Journal of Climatology., vol 37., pp 544–556.

Klanderud, K†., Meineri, E†., Töpper, J., Michel, P. & Vandvik, V. 2017., Biotic interaction effects on seedling recruitment along bioclinatic gradients: Testing the stress-gradient hypothesis. Journal of Vegetation Science., Vol 28., pp 347–356. † These authors contributed equally to the paper.

Meineri, E. & Hylander, K., 2017., Fine-grain large-domain climate models based on climate stations and comprehensive topographic information improve microrefugia detection. Ecography., vol 40, pp1003-1013. hal-02563872v1

Skarpaas, O., Meineri, E., Bargmann, T., Pötsch, C., Töpper, J. & Vandvik, V., 2016., Biomass partitioning in grassland plants along independent gradients in temperature and precipitation., Perspectives in Plant Ecology, Evolution and Systematics., Vol 19., pp 1-11.

Meineri, E., Dahlberg, C.J. & Hylander, K., 2015., Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution., Ecological modelling., Vol 313., pp 127–136.

Vandvik, V., Klanderud, K., Meineri, E., Måren, I.E. & Töpper, J.P., 2015., Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground., Oikos., Vol 125-2., pp 218-228.

Verschut, T.A., Meineri, E. & Basset, A., 2015., Biotic interactions affect the colonization behavior of aquatic detritivorous macroinvertebrates in a heterogeneous environment., Estuarine, Coastal and Shelf Science.157., pp 120-128.

Hylander, K., Ehrlén, J., Luoto, M. & Meineri, E., 2015., Microrefugia: Not for everyone., Ambio., Vol 44-1., pp S60-S68.

Meineri, E†., Deville, AS†., Bechet, A., Gauthier-Clerc, M. & Gremillet, D., 2015., Combining correlative and mechanistic habitat suitability models to improve ecological compensation., Biological reviews., Vol 90-1., pp 314-329. †These authors contributed equally to the paper. hal-01010779v1

Meineri, E., Skarpaas, O., Spindelbock, J., Bargmann, T. & Vandvik, V., 2014., Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species., Journal of Vegetation Science., Vol 25-1., pp 275–286.

Meineri, E., Rodrigez-Pérez, H. & Mesleard, F., 2014., Distribution and reproduction of Procambarus clarkii in relation to water management, salinity and habitat type in the Camargue., Aquatic Conservation: Marine and Freshwater Ecosystems., Vol 24-3., pp 312 – 323.

Meineri, E., Spindelbock, J. & Vandvik, V., 2013., Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches., Plant Ecology., 214-4., pp 607-619.

Meineri. E., Skarpaas. O. & Vandvik.V., 2012., Modelling alpine plant distributions at the landscape scale: do biotic interactions matter? Ecological Modelling., Vol 231-1., pp 1-10.

Graae, BJ., Ejrnaes, R., Lang, SI., Meineri, E., Ibarra, PT. & Bruun, HH., 2011., Strong microsite control of seedling recruitment in tundra., Oecologia., Vol 166-2., pp 565-576.

Auffret, A.G †., Meineri, E†., Bruun, HH., Ejrnaes, R. & Graae, BJ., 2010., Ontogenetic niche shifts in three Vaccinium species on a sub-alpine mountain side., Plant ecology and diversity., Vol 3-2., pp 131-139. †These authors contributed equally to the paper.

Book chapters
Rodrigez-Pérez, H, Meineri, E. & Prola, T., 2013., in Gauthier-Clerc, M., Mesleard, F. & Blondel, J., L’Ecrevisse de Louisiane une paradoxe pour la conservation de la «diversité biologique»., Sciences de la conservation,. De Boeck Edition.

MICROMED - Conservation de la flore face au réchauffement climatique : caractériser, cartographier et évaluer le rôle des microrefuges en région Sud-PACA

by Eric Meineri

Project description:

Microrefugia are small areas where populations persist outside their species range, supposedly because favorable microenvironmental conditions. Studies about microrefugia often aim to identify and quantify the relationships between topography, forest management and microclimate to use their results to discuss landscape configurations that may lead to the emergence of microrefugia. However, the direct link between microclimate and microrefugia may not be as obvious as it seems. The very hypothesis of a microclimate within microrefugia remains to be demonstrated and the level of sensitivity of species to microclimatic variations remains unknown. In the MICROMED project, co-financed by the SUD-PACA region and the Mediterranean National Botanical Conservatory, we carried-out a bottom-up approach, from the putative microrefugia to the microclimate and the landscape, to better understand the functioning of these very special microsites. We attempted to identify current microrefugia for two species with circumboreal and alpine distribution, Oxalis acetosella and Arabis alpina, respectively, at the southern and lowermost limits of their range in the Mediterranean region. For these two species, we looked for populations that were exceptionally meridional or low in altitude, disjunct from the respective distribution range of the two species. By doing so, we could identify around thirty sites that could be assimilated as current microrefugia. Climate monitoring, botanical inventories and recording of many variables (commonly described as a microclimate forcing factor, of a topographical nature or related to forest management) were carried out in each of these microrefugia. For each microrefugium, these measurements were repeated in a “neighboring” site located only 50 m away, systematically placed at a higher altitude and facing north, so as not to force a warmer microclimate in the neighboring sites.

To date, climate data have been analyzed for only half of the sites. These results corroborate the existence of a colder microclimate in the microrefugia, and especially for the abyssal sites (exceptionally low in altitude). The daily temperature difference between microrefugia and neighboring sites is -1.1°C on average and intensifies to -1.6°C in summer for maximum temperatures, which corresponds to about twenty years in terms of climate change. These microrefugia, which are generally located in topographic depressions and under cover of a deciduous forest, benefit from a thermal inversion which surprisingly persists throughout the year. This microclimate is sufficiently distinct to significantly impact the plant communities, with significantly higher frequency of species with colder temperature and moister humidity optima in the microrefugia. The rest of the project will focus on the possible decoupling processes of the microclimate in the microrefugia, i.e. the ability that these microsites would have to minimize the ongoing global warming. Based on all findings, we will try to propose sites that can serve as a microrefugia for species threatened by global warming.

In addition, we have setup a network a monitored sites in the Saint-Baume area (Paradis - Pas de l’ail) where several populations of Arabis Alpina could be found (the bioclimatic Observatory SAINTOBS). We are monitoring climate and floristic data in about 70 sites within a 30Ha area to better understand the scale of biological responses to microclimatic variations and to assess if and how marginal populations make use of such microclimatic variations. The First results will be available soon.

Team members:
Marie Finocchiarro (PhD student), Frederic Médail (Pr IMBE), Katia Diadema (CBNMed), Arne Saatkamp (MCF IMBE), Daniel pavon (IE IMBE), Eric Meineri (MCF IMBE)

References:
Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D. and Meineri, E. (2022), Bridging the gap between microclimate and microrefugia: a bottom-up approach reveals strong climatic and biological offsets. Global Change Biology. Accepted. https://doi.org/10.1111/gcb.16526