

Improving visibility for knowledge holders in ethnobiological and ethnopharmacological publications

Irene Teixidor Toneu, G. Odonne, M. Leonti, M. Hudson, F.M. Jordan, Giulia Mattalia, C.G.J. Pankararu, M.T. Silva, L.S. Silva, T. Ulian, et al.

► To cite this version:

Irene Teixidor Toneu, G. Odonne, M. Leonti, M. Hudson, F.M. Jordan, et al.. Improving visibility for knowledge holders in ethnobiological and ethnopharmacological publications. *Journal of Ethnopharmacology*, 2026, 355, pp.120632. 10.1016/j.jep.2025.120632 . hal-05313474

HAL Id: hal-05313474

<https://hal.science/hal-05313474v1>

Submitted on 14 Oct 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1 **Improving visibility for knowledge holders in ethnobiological and ethnopharmacological**
2 **publications**

3
4 I. Teixidor-Toneu^{1*}, G. Odonne², M. Leonti³, M. Hudson⁴, F.M. Jordan⁵, G. Mattalia¹, C.G.J.
5 Pankararu⁶, M.T. Silva⁷, L.S. Silva⁸, T. Ulian^{9,10}, I. Vandebroek¹¹, J. Wall¹², N. Hanazaki¹³

6
7 1 IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Marseille, France; ITT
8 <https://orcid.org/0000-0002-7122-2044> (irene.teixidor-toneu@univ-amu.fr); GM
9 <https://orcid.org/0000-0002-1947-7007> (giulia.mattalia@imbe.fr)

10 2 LEEISA, CNRS, Université de Guyane, IFREMER, Cayenne 97300, French Guiana
11 (guillaume.odonne@cnrs.fr)

12 3 Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy;
13 <https://orcid.org/0000-0002-4726-9758> (mleonti@unica.it)

14 4 Te Kotahi Research Institute, University of Waikato, Hamilton, New Zealand;
15 <https://orcid.org/0000-0003-3880-4015> (maui.hudson@waikato.ac.nz)

16 5 Department of Anthropology and Archaeology, University of Bristol, Bristol, UK;
17 <https://orcid.org/0000-0002-9953-8884> (Fiona.Jordan@bristol.ac.uk)

18 6 PPG Social Anthropology, Museu Nacional, Rio de Janeiro; Coordinator of the Sector
19 Chamber of Guardians of Biodiversity (CGen/Ministry of the Environment), Brazil.
20 <https://orcid.org/0000-0003-1309-5400> (crisjuliao.pankararu@gmail.com)

21 7 Movimento dos Pequenos Agricultores (MPA); PPG História das Ciências e das Técnicas e
22 Epistemologia, Universidade Federal do Rio de Janeiro, Brazil <https://orcid.org/0000-0002-9362-7683> (marcianotol71@yahoo.com.br)

23 8 Universidade Federal da Bahia; Movimento dos Pequenos Agricultores (MPA), Brazil
<https://orcid.org/0000-0002-9365-9220> (leilasantanas@gmail.com)

24 9 Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK; <https://orcid.org/0000-0001-8298-256X> (tiziana.ulian@unite.it)

25 10 Department of Life Sciences and Systems Biology, University of Turin, Viale Pier Andrea
26 Mattioli 25, 10123 Torino, Italy (t.ulian@kew.org)

27 11 Caribbean Centre for Research in Bioscience (CCRB), Faculty of Science and Technology,
28 The University of the West Indies, Mona, Kingston 7, St. Andrew, Jamaica;
29 <https://orcid.org/0000-0002-1663-0045> (ina.vandebroek@uwi.edu)

30 12 Turku Institute for Advanced Studies & Department of Landscape Studies, University of
31 Turku, Turku, Finland; <https://orcid.org/0000-0002-2775-8132> (jrwall@utu.fi)

32 13 Laboratory of Human Ecology and Ethnobotany (ECOHE), Department of Ecology and
33 Zoology, Universidade Federal de Santa Catarina, Florianópolis, Brazil; <https://orcid.org/0000-0002-7876-6044> (hanazaki@gmail.com)

34 *Correspondence: irene.teixidortoneu@ird.fr; +33 491288536; Aix Marseille Université,
35 Campus Etoile, Faculté de St Jérôme, Avenue Escadrille Normandie Niémen – Case 421,
36 13397 Marseille cedex 20

37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52 **Abstract**

53 **Ethnopharmacological relevance:** Ethnopharmacology and ethnobiology largely focus on the
54 study of traditional knowledge related to medicinal and other uses of plants, animals or
55 minerals. Despite decades of political advocacy, ethnopharmacological and ethnobiological
56 information is still sometimes published without proper attribution of the cultural identities and
57 affiliations of the communities that shared it.

58 **Aim of the study:** Identify key guidelines to ensure the proper attribution of ethnobiological
59 and ethnopharmacological knowledge recorded in scientific publications to the communities
60 who provided it.

61 **Material and methods:** This article is based on extensive group discussions that started at a
62 workshop entitled “A worldwide database of local uses of biodiversity: Why? For whom? And
63 how?” (18th Congress of the International Society of Ethnobiology in Marrakech, Morocco,
64 May 15-19, 2024), and was attended by around 50 participants. The guidelines were developed
65 through an iterative revision process.

66 **Results:** We propose practical guidelines to improve the attribution and thus, visibility, of
67 communities whose knowledge contributes to ethnobiological and ethnopharmacological
68 publications.

69 **Conclusion:** Transparent and consistent reporting of the provenance of place-based ancestral
70 knowledge from communities is essential for advancing the objectives of the Nagoya Protocol,
71 the Treaty on Intellectual Property, Genetic Resources and Associated Traditional Knowledge,
72 and for strengthening academic inquiry.

73
74 **Keywords:** CARE principles, cross-cultural studies, FAIR principles, guidelines, Indigenous
75 Data Sovereignty, Nagoya protocol, transdisciplinarity.

76
77
78 **1. Visibility of knowledge holders in publications including traditional knowledge about
79 biodiversity**

80 Proper attribution is a means of reducing the invisibility and the muting of marginalized social
81 groups in the research process. Invisibility is a form of social and epistemic injustice inflicted
82 on knowledge holders. Epistemic injustice refers to the harm done to people specifically in
83 their capacity as knowledgeable individuals and the systemic discrimination of those who
84 developed specific knowledge (Fricker, 2007). Indigenous and other place-based, non-
85 academic knowledge “holders” are often invisible in public discourses and debates (Levis et
86 al., 2024; Molnár et al., 2023). The quotation marks around the word “holders” serve as a
87 reminder that expressions which refer to the people who collaborate with academics in
88 ethnobiological and ethnopharmacological studies can have different meanings to different
89 audiences. For instance, the “holder” can refer to the one who knows, but can also refer to the
90 one who controls and appropriates knowledge. Indigenous Peoples may learn directly from
91 Mother Nature and may share this knowledge with each other and other peoples spontaneously,
92 it is relational and fluid, not fixed or contained. Academic literature often refers to “informants”
93 or “participants,” yet these terms can intentionally or unintentionally frame individuals in
94 passive roles. The more neutral term “participants” may often fall short of capturing the active,
95 reciprocal, and sovereign nature of knowledge exchange in many Indigenous and local
96 contexts. Through the text, we use the term “holders”, recognising that it may not be adequate
97 to refer to all peoples having different forms of knowledge about biodiversity.

100 Ensuring fair and consistent attribution to knowledge holders is a general issue in ethnobiology
101 (encompassing ethnobotany and ethnozoology; Cooke et al., 2021; Walter et al., 2021),
102 ethnomedicine, and ethnopharmacology (Weckerle et al., 2018). At the same time, there are
103 increasing efforts to work collaboratively and equitably with Indigenous Peoples, Afro-
104 descendant communities and other diaspora, and local communities (hereafter “communities”,
105 while acknowledging the substantial power imbalances that exist both among these
106 communities, as well as in relation to dominant or majority populations globally) in
107 sustainability decision-making, healthcare planning, and biodiversity conservation (e.g., Carrie
108 et al., 2015; Hill et al., 2020; McElwee et al., 2020; Vandebroek et al., 2023). For example, one
109 of the key discussions at the 2024 United Nations Biodiversity Conference of the Parties to the
110 UN Convention on Biological Diversity (COP16) focused on the role of communities in
111 biodiversity conservation and resulted in the creation of a working group on article 8j (CBD,
112 2024). The marginalization of traditional medical knowledge—due to limited research,
113 insufficient policy engagement, and poor or lacking integration frameworks—undermines its
114 incorporation into national health systems. As a result, health policies and materials often lack
115 cultural sensitivity (WHO, 2005; Caceres Guido et al., 2015), while respecting cultural
116 acceptance of medical care is fundamental for achieving Universal Health Coverage (WHO,
117 2013; UN General Assembly, 2015).

118 To date, knowledge holders are not reliably and consistently acknowledged in publications
119 reporting the use and stewardship of biodiversity (Carmona et al., 2023). In a review about
120 medicinal plant use surveys conducted in the Brazilian Atlantic Forest, 57% of the 162
121 referenced articles did not provide *any* information on knowledge holders (Zank et al., 2023)
122 while a review of English academic literature about cultural keystone species revealed that 20%
123 of 313 articles did not specify for which sociocultural group the species were important
124 (Mattalia et al., 2024). Identifying a community of knowledge holders can be challenging.
125 Communities are often a mosaic of languages and cultures that have exchanged knowledge for
126 centuries, sometimes through recognised knowledge guardians, and many other times through
127 more diffuse, collectively held practices. However, this should not dissuade the reporting of
128 communities’ identity in ethnopharmacological and ethnobiological publications. There is
129 considerable variation in how researchers and research projects engage with knowledge holders
130 during collaborations, as well as in the extent to which communities’ identities are
131 acknowledged or disclosed in resulting publications. In publications and databases, a
132 continuum exists between not mentioning who knows and uses specific biodiversity (e.g.,
133 Species Use Database <https://speciesusedatabase.com>) and conducting research and building
134 up databases together with communities (e.g., Ethno-ornithology World Atlas
135 <https://ewatlas.net>). The Ethno-ornithology World Atlas uses the Mukurtu platform
136 (<https://mukurtu.org/>) and Traditional Knowledge Labels (<https://localcontexts.org>), which
137 enable communities to manage, share and exchange aspects of their heritage within a database
138 in culturally relevant and ethical ways. The platform and the labels allow regulating access and
139 tagging knowledge in databases regarding the provenance, permissions, and protocols of use
140 of information. Other examples of co-created databases are the UseFlora
141 (www.useflora.ufsc.br) and the EthnoFlora DB French Guiana. UseFlora is being built by a
142 team including Indigenous and non-Indigenous researchers to structure a database about useful
143 plants and their users in Brazil, respecting both academic and Indigenous perspectives.
144 EthnoFlora has been developed to gather in a single database all the published information
145 about French Guianese ethnobotany in order to repatriate it to the knowledge holders so they
146 gain access on what’s been published about them. Transdisciplinary research, co-steered and
147 co-authored with local researchers and community members, is perceived as increasingly
148 relevant and important to foster sustainable development, mitigate biodiversity loss and the
149

150 effects of climate change, and contribute to social justice (Ibarra et al. 2023; Norström et al.,
151 2020; Vandebroek et al., 2023). There is a need to increase the quality of publications and
152 databases explicitly reporting the origin of recorded knowledge, improving visibility of
153 knowledge holders, and echoing these voices, territories, knowledge systems, and ways of
154 understanding and engaging with nature (Díaz-Reviriego et al., 2024). After extensive
155 discussions among the co-authoring team, we concluded that shared standards are required for
156 reporting cultural background data of the involved communities because culture affects human-
157 nature relationships, how these relationships are perceived, and how solutions can be developed
158 and pursued.

159

160 This contribution emerges from discussions between an international group of ethnobiologists
161 and Indigenous representatives during a workshop entitled “A worldwide database of local uses
162 of biodiversity: Why? For whom? And how?” that took place during the 18th Congress of the
163 International Society of Ethnobiology in Marrakech (Morocco; May 15-19, 2024). The
164 workshop was attended by around 50 participants, who were invited to follow-up discussions
165 leading to the proposed guidelines. To support these discussions, a first review of existing
166 authorship guidelines in journals dedicated to ethnobiology and ethnopharmacology
167 (Supplementary File 1) was conducted. This literature review found that authorship guidelines
168 are often unspecific when it comes to reporting of identities of communities (e.g. ‘ethnographic
169 background information’), though they may refer authors to publication standards and best
170 practice literature (e.g., Heinrich et al. 2018; Weckerle et al. 2018). The guidelines presented
171 here were developed through an iterative revision process based on this existing literature, with
172 a specific focus on ensuring the visibility of communities whose knowledge is published in
173 ethnobiological and ethnopharmacological research.

174

175

176 **2. Accurate reporting of knowledge holders’ identity is essential for fair and consistent 177 knowledge attribution**

178

179 The Nagoya Protocol on Access and Benefit Sharing (ABS) of the Convention on Biological
180 Diversity aims to ensure the fair and equitable sharing of benefits arising from the utilisation
181 of genetic resources and *associated traditional knowledge* (CBD, 2011; see Footnote 1). The
182 ABS agreement stipulates that knowledge holders must be part of the ABS process for any
183 project concerning their understanding about and use of biodiversity, that Free, Prior Informed
184 Consent is required, and mutually agreed terms have to be established. However, ABS
185 guidelines do not specify how the representation of knowledge holders is to be ensured. Article
186 12.2 of the Nagoya protocol indicates that “Parties, with the effective participation of the
187 indigenous [sic] and local communities concerned, shall establish mechanisms to inform
188 potential users of traditional knowledge associated with genetic resources about their
189 obligations” (established by community protocols, contracts and agreements establishing
190 mutually agreed terms, and/or contractual clauses for benefit-sharing; CBD, 2011). Thus, the
191 absence of specific instructions does not negate the responsibility to fulfil the ABS
192 requirements towards knowledge holders.

193

194 Reporting knowledge holders’ group identity in research outputs can establish a direct link
195 between their knowledge and the intellectual property rights owners. This can influence the
196 patentability of interventions that need to fulfil the requirements of novelty and inventiveness.
197 Such requirements are often not fulfilled when applications are already known to communities,
198 which constitutes “prior art” (World Intellectual Property Organization—WIPO, 2024;
199 although a caveat exists as new combinations and applications based on mixing use

200 applications can sometimes satisfy the requirements for novelty; Patwardhan, 2013). In that
201 case, they would qualify for equitable benefit-sharing agreements. Taking one step forward
202 towards Indigenous data sovereignty and governance, Carroll et al. (2023) proposed the CARE
203 Principles as a measure to strengthen the consistent and accurate attribution of knowledge
204 holders in publications and databases, which can be extended beyond Indigenous communities.
205 CARE principles include Collective benefit, Authority to control, Responsibility, and Ethics,
206 and refer to actions applicable within research, government and institutional data settings
207 (Carroll et al., 2023). For example, the implementation of CARE principles on archaeological
208 data repositories (e.g., universities, libraries) in Canada is under development, by attaching
209 permanent machine-readable information (i.e., meta-data) on authority, consent, and conditions
210 of use to Indigenous digital archaeological data throughout the data life cycle (Gupta et al.,
211 2023).

212 213 **3. Academic importance of accurately reporting knowledge holders' group identity 214 affiliation**

215 Attributing knowledge to specific communities is critically important when reporting on uses
216 of biodiversity, as cultural context strongly shapes medicinal practices, interpretations of
217 illness, and understandings of disease aetiology (Berlin et al., 1993; Foster and Anderson, 1978;
218 Gesler, 1992; Hofmann and Hinton, 2014; Nichter, 1992), as well as spirituality, ethics and
219 governance, including biodiversity stewardship (Berkes 2018; Chan et al., 2016). Diverse
220 forms of illness prevention and healing practices connecting spirituality characterise traditional
221 medicines. This aspect distinguishes traditional medicines from the biomedical model, which
222 is often perceived as reductionistic, objectifying patients as passive targets of medicalization
223 (Rocca and Anjum, 2020). Also, perceived effectiveness of medicines and responses to
224 therapeutic interventions depend on sociocultural contexts (Browner et al., 1988; Etkin, 1988;
225 Nichter, 1992). Human diet, ingestive behaviour and specific cultural practices are associated
226 with disease risk and epidemiology (Etkin and Ross, 1982; Johns, 1990; Dressler, 2004;
227 Lindeberg, 2010; Nakatsuka et al., 2017; Gajurel and Deresinski, 2021) and thus influence
228 patients' health-seeking behaviour and the selection of medicines.
229

230 Connecting specific knowledge about the natural world with knowledge holders also allows
231 for the scalability of environmental stewardship. The Intergovernmental Science-Policy
232 Platform on Biodiversity and Ecosystem Services has identified the synthesis of traditional
233 knowledge about the status of biodiversity and environmental trends as a global knowledge
234 gap (IPBES, 2019). Moreover, communities often suffer from detrimental transformations of
235 their environments because of deforestation, environmental degradation, chemical
236 contamination, and climate change (Fernández-Llamazares et al., 2021). These changes can
237 lead to the emergence of new diseases and the spread of old diseases, compromising livelihoods
238 and the full expression and transmission of some cultural practices. Therefore, accurate
239 reporting of knowledge holders' group identity through academic research can inform a large
240 diversity of cross-cultural studies, from cultural history and evolution to commons governance
241 and epidemiology. Without data on group identity, review articles and databases, including
242 those emerging from pharmacological, clinical, retrospective and biodiversity conservation
243 studies, lack cultural meaning and relevance. These data are necessary to scale up results,
244 supporting the importance of local knowledge systems in global science-policy arenas (Geck
245 et al., 2020; Fernández-Llamazares et al., 2024).

246 247 **4. Suggested guidelines for properly acknowledging the communities of knowledge 248 holders in ethnopharmacological and ethnobiological publications**

250
251 Most ethnobiologists adhere to the guiding principles of the International Society of
252 Ethnobiology Code of Ethics (ISE, 2006), yet requirements for reporting ethnobiological data
253 from field studies vary widely across journals (Supplementary File 1). Most journal guidelines
254 require the reporting of Linnaean taxonomy and evidence of ethics committees' approval for
255 publication. However, expectations regarding the reporting of communities' identities are less
256 articulated.
257
258 Improvements in publication standards by encouraging the inclusion of simple baseline
259 information could contribute towards a major visibility and recognition of knowledge holders'
260 identity. Mandatory inclusion of the ethnographic and linguistic background of knowledge
261 holders in journal submission guidelines would help foster greater awareness and consistency
262 in publication practices. Drawing from advances towards Findable, Accessible, Interoperable,
263 and Reusable (FAIR) data made in cross-cultural anthropology and linguistics (e.g., Forkel and
264 Hammarström, 2022), we suggest a set of minimal information that should be strongly
265 encouraged or required in authorship and data sharing guidelines.
266
267 The absence of key information, such as community identity and language, should be flagged
268 during the peer review process. When working with secondary data (e.g., literature reviews,
269 herbarium vouchers, or biocultural collections), original cultural information should be
270 reported wherever possible. If this is missing, all good-faith efforts should be made to retrieve
271 community identity data using the information available in the secondary source (e.g., by
272 contacting the authors of the publications and/or cultural groups). However, we recognise that
273 searching for this information retrospectively is not always possible. If the original source is
274 not available or no longer traceable, this should be mentioned in the final publication.
275
276 We suggest the following publication guidelines to ensure attribution and foster the intellectual
277 property rights of knowledge holders through accurate identification of their cultural
278 background:
279 1. **Document Free Prior Informed Consent:** Include a description of how Free Prior
280 Informed Consent was obtained, along with copy of the institutional ethics approval in
281 the supplementary material (see Footnote 2), and detail the procedures used to comply
282 with specific national legislations and any applicable community protocols (if the latter
283 exist). Include a description of the community-determined actions that enable access to,
284 use of, and publication of data.
285 2. **Use self-declared group names:** Report the self-declared name for the cultural group
286 in their own language. For example, the terms 'Baka' and 'Amazigh' should be used
287 instead of the pejorative terms 'Pygmies' and 'Berbers'. Reporting non-pejorative
288 group names also supports their autonomy. D-PLACE, the most up-to-date and
289 comprehensive curated database for cross-cultural research (Kirby et al., 2016),
290 maintains lists of validated group names. If communities prefer not to have their
291 identity disclosed, a general statement to that effect should be included.
292 3. **Include language identifiers:** Use language identification codes (Forkel and
293 Hammarström, 2022). Glottolog language identifiers (or three-digit ISO-639-3 codes;
294 Hammarström et al. 2025; <https://glottolog.org/glottolog/language>) can be mentioned
295 for the language(s) spoken in the community and the language(s) of vernacular names
296 reported in the study (e.g., plant or animal names, habitat type names). This is especially
297 important for endangered languages and can support linguistic conservation efforts.
298 4. **Provide geographical information:** Report the name(s) of the locality, geographical
299 coordinates and administrative units of the study area, with the authorization of the

300 communities involved. Coordinates should be omitted if communities express privacy
301 concerns or cultural sensitivities around sharing location data.
302

303 The suggested guidelines align with ongoing efforts by knowledge holders to strengthen
304 governance, decision-making and cultural authority over their data concerning their
305 communities. “Indigenous People’s Data” refer to the information and knowledge recorded by
306 or about Indigenous peoples, their governments, and non-human relations (Taitingfong et al.,
307 2023). Here we extend the concept of Indigenous People’s Data to all communities whose
308 information and knowledge about biodiversity are recorded in ethnobiological and
309 ethnopharmacological research. In practice, upholding Indigenous data sovereignty and
310 governance is done through the inclusion of metadata that provide critical information for the
311 proper attribution and guide access to communities’ knowledge and data (i.e., Taitingfong et
312 al., 2023). Indigenous metadata bundles include information about governance, provenance,
313 physical space, protocols, and data rights (Taitingfong et al., 2023) that are reported alongside
314 knowledge about biodiversity.
315

316 These guidelines are not intended to replace the ethical review processes or legal requirements
317 for permits (e.g., Brazil’s national legislation regarding the mandatory registration procedures
318 for accessing traditional knowledge associated with biodiversity; Castro & Santos, 2022), but
319 rather to complement them. Ultimately, these guidelines aim to inform future publication
320 practices linking cultural and ecological information. We encourage ethnobiologists and
321 ethnopharmacologists to actively support communities’ data sovereignty and governance and
322 work towards greater visibility, recognition, and equity in our inter- and transdisciplinary fields
323 of research.
324
325

326 **FOOTNOTES**

327

- 328 1. While not all countries have yet signed and ratified the protocol, we strongly urge
329 ethnobiology and ethnopharmacology researchers from these countries or working in these
330 countries to follow the best practices outlined here. Moreover, any country may have
331 national rules and permits regarding the documentation of traditional knowledge, which
332 should be followed and obtained by researchers.
- 333 2. In many countries, ethics committees only take into account medical and psychological
334 research. Sometimes, an ethics approval can be obtained from the country where a
335 researcher is based, if a committee does not exist in the country where the research is
336 conducted. If this is not possible, researchers should nevertheless follow ethical guidelines
337 (e.g., ISE 2006) and obtain the necessary research permits (Vandebroek et al., 2025).

338 339 **POSITIONALITY STATEMENT**

340

341 We are a diverse group of researchers and practitioners working on a range of aspects of
342 Indigenous and local knowledge about biodiversity, including Indigenous data sovereignty.
343 Most of us are based in academic institutions in Oceania, Central and South America (including
344 the Caribbean), and Europe. Although most authors share a Western background, we have long-
345 term experience working with Indigenous Peoples and/or Afro-descendant and local
346 communities with a plurality of knowledge systems, understandings, and visions. We all
347 regularly (co-)write academic publications, but we have multiple sensitivities and affinities
348

349 regarding knowledge production, co-creation, and dissemination. Writing this viewpoint has
350 been an exercise of careful listening and compromise.

353 **ACKNOWLEDGEMENTS**

355 We would like to thank all the participants of one online meeting (24/02/2023) and an in-person
356 session at the 18th Congress of the International Society of Ethnobiology in Marrakech,
357 Morocco (15-19/05/2024) for their contribution to the discussions that led to the writing of this
358 article. We would like to thank the French National Research Institute for the Congress grant
359 that allowed for the participation of four Latin American researchers to the session, including
360 an Indigenous leader. Special thanks to William Milliken, who participated in the discussions
361 leading to this article.

363 **FUNDING SOURCES**

366 The in-person session at the 18th Congress of the International Society of Ethnobiology in
367 Marrakech was supported by the Congress grant of the French National Research Institute for
368 Sustainable Development (IRD). ITT received support from the French government under the
369 France 2030 investment plan, as part of the Initiative d'Excellence d'Aix-Marseille Université
370 (A*MIDEX (AMX-22-CPJ-05) as well as the IRD ANR-CPJ contract number 402299/00. GO
371 has benefited from grants managed by the Agence Nationale de la Recherche (AIBSI: ANR-
372 22-EXES-0005; CEBA: ANR-10-LABX-25-01). NH received funding from the Serrapilheira
373 Institute and a CNPq research productivity scholarship (306789/2022-1).

374 **AUTHORSHIP STATEMENT**

376 Conceptualisation (ITT, NH, GO), Investigation (all), Writing original draft (ITT, NH, GO,
377 ML, IV, JW), Review and editing (all), Validation (all).

380 **DATA STATEMENT**

381 This article does not use data.

383 **ABBREVIATION LIST**

384 ABS: Access and Benefit Sharing

385 CARE: Collective benefit, Authority to control, Responsibility, and Ethics

386 FAIR: Findable, Accessible, Interoperable, and Reusable

389 **REFERENCES**

391 Berkes, F., 2018. *Sacred ecology*. Routledge, New York.

392 Berlin, E.A., Jara, V.M., Berlin, B., et al., 1993. Me' winik: discovery of the biomedical
393 equivalence for a Maya ethnomedical syndrome. *Social Science and Medicine*, 37, 671–
394 678.

395 Browner, C.H., Ortiz de Montellano, B.R., Rubel, A.J., 1988. A methodology for cross-cultural
396 ethnomedical research. *Current Anthropology* 29(5): 681-702.

397 Caceres Guido, P., Ribas, A., Gaioli, M., Quattrone, F., Macchi, A., 2015. The state of
398 integrative medicine in Latin America: The long road to include complementary, natural,

399 and traditional practices in formal health systems. European Journal of Integrative
400 Medicine 7(1): 5-12. <https://doi.org/10.1016/j.eujim.2014.06.010>

401 Carmona, R., Reed, G., Thorsell, S., Dorough, D.S., MacDonald, J.P., Rai, T. B., Sanago, G.
402 A., 2023. Analysing engagement with indigenous peoples in the intergovernmental panel
403 on climate Change's sixth assessment report. *npj Climate Action*, 2(1), 29.

404 CBD, 2011. Nagoya protocol on access to genetic resources and the fair and equitable sharing
405 of benefits arising from their utilisation to the convention on biological diversity.
406 Secretariat of the Convention on Biological Diversity. Montreal. Available online:
407 <https://www.cbd.int/abs/default.shtml>

408 Carrie, H., Mackey, T.K., Laird, S.N., 2015. Integrating traditional indigenous medicine and
409 western biomedicine into health systems: a review of Nicaraguan health policies and
410 miskitu health services. *Int J Equity Health* 14;14:129. <https://doi.org/10.1186/s12939-015-0260-1>

412 Carroll, S.R., Garba, I., Figueiroa-Rodríguez, O.L., Holbrook, J., Lovett, R., Materechera, S.,
413 Parsons, M., Raserko, K., Rodriguez-Lonebear, D., Rowe, R., Sara, R., Walker, J.D.,
414 Anderson, J., Hudson, M., 2023. The CARE Principles for Indigenous Data Governance.
415 Data Science. 19(1): 43.

416 Castro, B.S.D., & Santos, A.C.C.D. (2022). Genetic Heritage Management Council and the
417 coordination of the access and benefit-sharing policy in Brazil. *Ambiente & Sociedade*,
418 25, e01781. <https://doi.org/10.1590/1809-4422asoc20200178r1vu2022L1AO>

419 CBD, 2024. Conference of the Parties to the Convention on Biological Diversity: Sixteenth
420 meeting. Cali, Colombia, 21 October – 1 November 2024
421 <https://www.cbd.int/doc/c/f8db/776f/0c155c403be48987bff29f86/cop-16-1-01-en.pdf>

422 Chan, K.M.A., Balvanera, P., Benessaiah, K., Chapman, M., Díaz, S., Gómez-Bagethun, E.,
423 et al., 2016. Why protect nature? Rethinking values and the environment. *PNAS* 113(6):
424 1462-1465. <https://doi.org/10.1073/pnas.1525002113>

425 Cooke, S.J., Nguyen, V.M., Young, N., Reid, A.J., Roche, D.G., Bennett, N.J., Rytwinski, T.,
426 Bennett, J.R., 2021. Contemporary authorship guidelines fail to recognize diverse
427 contributions in conservation science research. *Ecol Sol and Evidence* 2, e12060.
428 <https://doi.org/10.1002/2688-8319.12060>

429 Díaz-Reviriego, I., Torralba, M., Vizuete, B., Ortiz-Prychodzka, S., Pearson, J., Heindorf, C.,
430 Llanque Zonta, A., Oteros-Rozas, E., 2024. Disentangling gender and social difference for
431 just and transformative biocultural approaches. *People and Nature*, 6(4), 1394-1406.
432 <https://doi.org/10.1002/pan3.10673>

433 Dressler, W., 2004. Culture and the risk of disease. *British Medical Bulletin* 69(1): 21-31.
434 <https://doi.org/10.1093/bmb/ldh020>

435 Etkin, N., 1988. Ethnopharmacology: Biobehavioral approaches in the anthropological study
436 of indigenous medicines. *Annual review of anthropology* 17:23-42.

437 Etkin, N.L., Ross, P.J., 1982. Food as medicine and medicine as food: an adaptive Framework
438 for the interpretation of plant utilization among the Hausa of northern Nigeria. *Social
439 Science & Medicine* 16,1559–1573. [https://doi.org/10.1016/0277-9536\(82\)90167-8](https://doi.org/10.1016/0277-9536(82)90167-8)

440 Fernández-Llamazares, Á., Lepofsky, D., Lertzman, K., Armstrong, C.G., Brondizio, E.S.,
441 Gavin, M.C., Lyver, P.O., Nicholas, G.P., Pascua, P., Reo, N.J., Reyes-García, V.,
442 Turner, N.J., Yletyinen, J., Anderson, E.N., Balée, W., Cariño, J., David-Chavez, D.M.,
443 Dunn, C.P., Garnett, S.C., Greening (La'goot), S., (Niniwum Selapem), S.J., Kuhnlein,
444 H., Molnár, Z., Odonne, G., Retter, G.-B., Ripple, W.J., Sáfián, L., Bahraman, A.S.,
445 Torrents-Ticó, M., Vaughan, M.B., 2021. Scientists' Warning to Humanity on Threats to
446 Indigenous and Local Knowledge Systems. *Journal of Ethnobiology* 41, 144–169.
447 <https://doi.org/10.2993/0278-0771-41.2.144>

448 Fernández-Llamazares, Á., Teixidor-Toneu, I., Armstrong, C.G., Caviedes, J., Ibarra, J.T.,
449 Lepofsky, D., McAlvay, A.C., Molnár, Z., Moraes, R.M., Odonne, G., Poe, M.R.,
450 Sharifian Bahraman, A., Turner, N.J., 2024. The global relevance of locally grounded
451 ethnobiology. *J Ethnobiology Ethnomedicine* 20, 53. <https://doi.org/10.1186/s13002-024-00693-w>

453 Forkel, R., Hammarström, H., 2022. Glottocodes: Identifiers linking families, languages and
454 dialects to comprehensive reference information. *SW* 13, 917–924.
455 <https://doi.org/10.3233/SW-212843>

456 Foster, G., Anderson, B., 1978. *Medical Anthropology*. New York: Alfred A Knopf.

457 Fricker, M., 2007. *Epistemic injustice: Power and the ethics of knowing*. Oxford University
458 Press.

459 Gajurel, K., Deresinski, S., 2021. A review of infectious diseases associated with religious and
460 nonreligious rituals. *Interdisciplinary Perspectives on Infectious Diseases* 2021(2):
461 1823957. <https://doi.org/10.1155/2021/1823957>

462 Gesler, W.M., 1992. Therapeutic landscapes: Medical issues in light of the new cultural
463 geography. *Social Science & Medicine* 34(7): 735–746. [https://doi.org/10.1016/0277-9536\(92\)90360-3](https://doi.org/10.1016/0277-9536(92)90360-3)

465 Geck, M.S., Cristians, S., Berger-González, M., Casu, L., Heinrich, M., Leonti, M., 2020.
466 Traditional Herbal Medicine in Mesoamerica: Toward Its Evidence Base for Improving
467 Universal Health Coverage. *Front Pharmacol.* 31(11):1160.
468 <https://doi.org/10.3389/fphar.2020.01160>

469 Gupta, N., Martindale, A., Supernant, K., Elvidge, M., 2023. The CARE principles and the
470 reuse, sharing, and curation of Indigenous data in Canadian archaeology. *Advances in
471 Archaeological Practice*. 11(1):76-89. <https://doi.org/10.1017/aap.2022.33>

472 Hammarström, H., Forkel, R., Haspelmath, M., Bank, S., 2025. *Glottolog 5.2*. Leipzig: Max
473 Planck Institute for Evolutionary Anthropology. <https://doi.org/10.5281/zenodo.15525265>

474 Heinrich, M., Lardos, A., Leonti, M., Weckerle, C., Willcox, M., Applequist, W., ... & Stafford,
475 G. (2018). Best practice in research: consensus statement on ethnopharmacological field
476 studies—ConSEFS. *Journal of Ethnopharmacology*, 211, 329–339.
477 <https://doi.org/10.1016/j.jep.2017.08.015>

478 Hill, R., Adem, Ç., Alangui, W.V., Molnár, Z., Aumeeruddy-Thomas, Y., Bridgewater, P.,
479 Tengö, M., Thaman, R., Adou Yao, C.Y., Berkes, F., Carino, J., Carneiro Da Cunha, M.,
480 Diaw, M.C., Díaz, S., Figueroa, V.E., Fisher, J., Hardison, P., Ichikawa, K., Kariuki, P.,
481 Karki, M., Lyver, P.O., Malmer, P., Masardule, O., Oteng Yeboah, A.A., Pacheco, D.,
482 Pataridze, T., Perez, E., Roué, M.-M., Roba, H., Rubis, J., Saito, O., Xue, D., 2020.
483 Working with Indigenous, local and scientific knowledge in assessments of nature and
484 nature's linkages with people. *Current Opinion in Environmental Sustainability* 43, 8–
485 20. <https://doi.org/10.1016/j.cosust.2019.12.006>

486 Hofmann, S.G., Hinton, D.E., 2014. Cross-cultural aspects of anxiety disorders. *Current
487 Psychiatry Reports* 16: 1-5. <https://doi.org/10.1007/s11920-014-0450-3>

488 Ibarra, J.T., Caviedes, J., Marchant, C., Mathez-Stiefel, S-L., Navarro-Manquilef, S.,
489 Sarmiento, F.O., 2023. Mountain social-ecological resilience requires
490 transdisciplinarity with Indigenous and local worldviews. *Trends in Ecology and
491 Evolution*, 38(11): 1005-1009

492 IPBES, 2019. Global Assessment report of the intergovernmental science-policy platform on
493 biodiversity and ecosystem services, Brondizio, E.S., Díaz, S., Settele, J., Ngo, H.T.
494 (eds). IPBES Secretariat, Bonn, Germany. ISBN: 978-3-947851-20-1

495 ISE, 2006. International Society of Ethnobiology Code of Ethics (with 2008 additions).
496 <https://www.ethnobiology.net/code-of-ethics/>

497 Johns, T., 1990. With bitter herbs they shall eat it: chemical ecology and the origins of human
 498 diet and medicine. University of Arizona Press, Tucson.

499 Kirby, K.R., Gray, R.D., Greenhill, S.J., Jordan, F.M., Gomes-Ng, S., Bibiko, H.-J., Blasi,
 500 D.E., Botero, C.A., Bowern, C., Ember, C.R., Leehr, D., Low, B.S., McCarter, J.,
 501 Divale, W., Gavin, M.C., 2016. D-PLACE: A Global Database of Cultural, Linguistic
 502 and Environmental Diversity. PLoS ONE 11, e0158391.
 503 <https://doi.org/10.1371/journal.pone.0158391>

504 Levis, C., Hanazaki, N., Zank, S., Peroni, N., Julião, C.G., Da Silva, M.T., De Alencar Assis,
 505 A.L.A., Nakamura, E.M., Soldati, G., Almada, E.D., Odonne, G., Teixidor-Toneu, I.,
 506 2024. Safeguard stewards of biodiversity knowledge. Science 385, 504–506.
 507 <https://doi.org/10.1126/science.adp1749>

508 Lindeberg, S., 2010. Food and western disease: Health and nutrition from an evolutionary
 509 perspective. Wiley Online Library.

510 Mattalia, G., McAlvay, A., Teixidor-Toneu, I., Lukawiecki, J., Moola, F., Asfaw, Z.,
 511 Câmara-Leret, R., Díaz, S., Merlin Franco, F., Halpern, B.S., O'Hara, C., Renard, D.,
 512 Uprety, Y., Wall, J., Zafra-Calvo, N., Reyes-García, V., 2024. Cultural keystone
 513 species as a tool for biocultural stewardship. A global review. People and Nature,
 514 online. <https://doi.org/10.1002/pan3.10653>

515 McAlvay, A.C., Armstrong, C.G., Baker, J., Black Elk, L., Bosco, S., Hanazaki, N., Joseph,
 516 L., Martínez-Cruz, T.E., Nesbitt, M., Palmer, M.A., de Almeida, W.C.P., Anderson, J.,
 517 Asfaw, Z., Borokini, I.T., Cano-Contreras, E.J., Hoyte, S., Husdon, M., Ladio, A.L.,
 518 Odonne, G., Peter, S., Rashford, J., Wall, J., Wolverton, S., Vandebroek, I., 2021.
 519 Ethnobiology phase VI: Decolonizing institutions, projects, and scholarship. Journal of
 520 Ethnobiology, 41(2): 170-191. <https://doi.org/10.2993/0278-0771-41.2.170>

521 McElwee, P., Fernández-Llamazares, Á., Aumeeruddy-Thomas, Y., Babai, D., Bates, P.,
 522 Galvin, K., Guèze, M., Liu, J., Molnár, Z., Ngo, H.T., Reyes-García, V., Roy
 523 Chowdhury, R., Samakov, A., Shrestha, U.B., Díaz, S., Brondízio, E.S., 2020. Working
 524 with Indigenous and local knowledge (ILK) in large-scale ecological assessments:
 525 Reviewing the experience of the IPBES Global Assessment. Journal of Applied
 526 Ecology 57, 1666–1676. <https://doi.org/10.1111/1365-2664.13705>

527 Molnár, Z., Fernández-Llamazares, Á., Schunko, C., Teixidor-Toneu, I., Jarić, I., Díaz-
 528 Reviriego, I., Ivascu, C., Babai, D., Sáfián, L., Karlsen, P., Dai, H., Hill, R., 2023.
 529 Social justice for traditional knowledge holders will help conserve Europe's nature.
 530 Biological Conservation 285, 110190. <https://doi.org/10.1016/j.biocon.2023.110190>

531 Nakatsuka, N., Moorjani, P., Rai, N., Sarkar, B., Tandon, A., Patterson, N., Bhavani, G.S.,
 532 Girisha, K.M., Mustak, M.S., Srinivasan, S., Kaushik, A., Vahab, S.A., Jagadeesh, S.M.,
 533 Satyamoorthy, K., Singh, L., Reich, D., Thangaraj, K., 2017. The promise of discovering
 534 population-specific disease-associated genes in South Asia. Nature Genetics 49: 1403-
 535 1407 <https://doi.org/10.1038/ng.3917>

536 Nichter, M., 1992. Ethnomedicine: diverse trends, common linkages. In: Nichter, M. (Ed.),
 537 Anthropological Approaches to the Study of Ethnomedicine. Gordon and Breach,
 538 Yverdon, Switzerland, pp. 223–259.

539 Norström, A.V., Cvitanovic, C., Löf, M.F., West, S., Wyborn, C., Balvanera, P., Bednarek,
 540 A.T., Bennett, E.M., Biggs, R., de Bremond, A., et al., 2020. Principles for knowledge
 541 co-production in sustainability research. *Nature Sustainability*, 3(3), 182-190.
 542 <https://doi.org/10.1038/s41893-019-0448-2>

543 Patwardhan, B., 2013. Traditional knowledge patents: New guidelines or deterrents? *Journal
 544 of Ayurveda & Integrative Medicine* 4(1):1-4.
 545 <https://pmc.ncbi.nlm.nih.gov/articles/PMC3667426/pdf/JAIM-4-1.pdf>

546 Taitingfong, R., Martinez, A., Carroll, S.R., Hudson, M., Anderson, J., 2023. "Indigenous
547 Metadata Bundle Communiqué." Collaboratory for Indigenous Data Governance,
548 ENRICH: Equity for Indigenous Research and Innovation Coordinating Hub, and
549 Tikanga in Technology. <https://doi.org/10.6084/m9.figshare.24353743>

550 UN General Assembly (2015). Transforming our world: the 2030 Agenda for Sustainable
551 Development. New York City, USA: UN General Assembly.

552 Vandebroek I, West J, Walker K, Maldonado-Silvestrini S (2023) Fostering greater
553 recognition of Caribbean traditional plant knowledge. Trends in Ecology & Evolution
554 39: 9-12, <https://doi.org/10.1016/j.tree.2023.10.007>

555 Vandebroek, I., Stepp, J.R., Kunwar, R. et al., 2025. Upholding Ethical Accountability in
556 Ethnobotany and Ethnobiology Research. Economic Botany in press
557 <https://doi.org/10.1007/s12231-025-09634-4>

558 Walter, M., Lovett, R., Maher, B., Williamson, B., Prehn, J., Bodkin-Andrews, G., Lee, V.,
559 2021. Indigenous Data Sovereignty in the Era of Big Data and Open Data. Aust J Social
560 Issues 56, 143–156. <https://doi.org/10.1002/ajs4.141>

561 Weckerle, C. S., de Boer, H. J., Puri, R. K., van Andel, T., Bussmann, R. W., & Leonti, M.
562 (2018). Recommended standards for conducting and reporting ethnopharmacological
563 field studies. Journal of Ethnopharmacology, 210, 125-132.
564 <https://doi.org/10.1016/j.jep.2017.08.018>

565 World Health Organisation (WHO), 2005. National policy on traditional medicine and
566 regulation of herbal medicines: report of a WHO global survey. Geneva: World Health
567 Organisation.

568 World Health Organisation (WHO), 2013. Research for Universal Health Coverage. WHO
569 Luxembourg.

570 World Intellectual Property Organization (WIPO), 2024. Treaty on Intellectual Property,
571 Genetic Resources and Associated Traditional Knowledge.

572 Zank, S., Hanazaki, N., Gonçalves, M.C., Ferrari, P.A., De Morais, B.P., 2023. Threats and
573 Opportunities for Sustainable Use of Medicinal Plants in Brazilian Atlantic Forest
574 Based on the Knowledge of Indigenous Peoples and Local Communities, in: Jha, S.,
575 Halder, M. (Eds.), Medicinal Plants: Biodiversity, Biotechnology and Conservation,
576 Sustainable Development and Biodiversity. Springer Nature Singapore, Singapore, pp.
577 95–113. https://doi.org/10.1007/978-981-19-9936-9_3

578